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What's on for today?

Automated planning in non-trivial stochastic domains
Transparent specification language with generic solution scheme

Computational outlook on open issues



Automated planning

Shakey the robot [Fikes & Nilsson, 1971]

Synthesize action sequence to achieve
goals




A world of blocks
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Planning in the real (noisy) world

Actions may be stochastic Goal

Actions and states may be
continuous/discrete/mixed

States may be defined over unknown (number
of) objects

Start



NASA Mars Rover (Bresina et al, UAI-02)

A set of initial conditions, which may involve uncertainty about continuous
quantities like temperature, energy available, solar flux, and position.

A set of possible actions.

A set of certain and uncertain effects that describe the world following the action.

Uncertain effects on continuous variables are characterized by probability
distributions.

The problem that we have just described is essentially a decision-theoretic
planning problem.



Markov Decision Processes

Underlying decision-theoretic framework in game
theory, recommendation systems, robotics, etc.

Compute policy: maps states and time steps to
actions

Objective: maximise expected reward over horizon t




Maximising expected reward
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Additional complications

Unknown current state; estimate by noisy observation: partially observable
MDPs that can be reduced to belief MDPs

Probabilities/rewards unknown: reinforcement learning



. Elegant mathematical framework, but solving the
general case notoriously hard

. How easy to describe domain with complex
relationships and discovery?



Exploit structure
Monte Carlo planners that work in arbitrary MDPs are very slow in practice
Why? Only access sample traces, but do not exploit:

- Probabilities of transitions
- Structure of the planning model

States, actions more than abstract entities: instantiated over structured
domain theories that express relationships and dependencies



Desiderata

A rich modelling language that allows transparent domain axiomatisation in the
presence of unknowns and stochasticity

Solution scheme that leverages inherent structure



Probabilistic programming

Languages to model structured probability distributions
Make machine learning modular and enable descriptive clarity
Programming languages with stochastic primitive

Many proposed to date: Church, BLOG, Anglican, ProbLog, IBAL, etc.



ProblLog



% Probabilistic facts:
0.5::headsl.
0.6::heads2.

% Rules:
twoHeads :- headsl, heads?2.

% Queries:
query(heads1).
query (heads2).
query(twoHeads) .
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Two coin tosses in a sequence



redge(1,2).
::1edge(1,3).
redge(2,5).
::1edge(2,6).
redge(3,4).
::edge(4,5).
: redge(5,6).
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9 path(X,Y) :- edge(X,Y).
10 path(X,Y) :- edge(X,2),

11 Y \==Z,
12 path(Z,Y).
13

14 query(path(1,5)).

Knowledge graphs



Learning a relation

father(bart, stijn).
father(bart, pieter),
father(luc, soetkin).

mother(katleen, stijn).
mother(katleen, pieter).
mother(lieve, soetkin).

parent(bart,stijn).
parent(bart,pieter).
parent(luc,soetkin).

female(alice).
female(an).
female(esther].

male(bart).
male(etienne).
male(leon).

grandmother(esther,soetkin).
grandmother(esther,stijn).
grandmother(esther,pieter).



Candidates for iteration 4:

grandmother(A,B) :- parent(C,B), parent(A,C), parent(D,A) 0.503462603878
grandmother(A,B) :- parent(C,B), parent(A,C), parent(B,D) 0.457063711911
grandmother(A,B) :-— parent(C,B), parent(A,C), male(C) 0.432528690146
grandmother(A,B) :-— parent(C,B), parent(A,C), male(B) ©0.432528690146

RULE LEARNED: grandmother(A,B) :- parent(C,B), parent(A,C), \+male(A) 1.0

Learning a relation continued



Probabilistic model

Q1: In a group of 10 people, 60 percent have brown eyes.
Two people are to be selected at random from the group.
What i1s the probability that neither person selected will have
brown eyes?

Conditioning (observation) Query

From natural language (IJCAI-17)



Unknowns, continuous distributions and dynamics



Unknown color

Name random variable distribution conditions (body)
A _NA— _A—

/ N ~ ~
color(X) ~ uniform([black,brown|) < material(X) ~= wood.




Unknown physical size

material(X)~ finite([0.3:wood, 0.7 :metal]) < between(1,N, X).

size(X) ~ beta(2,3) < material(X) ~= metal. '“/ \
™\
size(X) ~ beta(4,2) - material(X) ~=wood. .. \



Unknown numbers

0.15| - ,
: (Infinite valued discrete
n ~ poisson(6). L G ] distribution)
0.0s5 |
000 ba L i
0 101 15

material(X)~ finite([0.3:wood, 0.7 :metal])<+—n ~= N, between(1, N, X).



Continuous distributions, dynamics

pos1(ID)x ~ gaussian(~(posy(ID)y),a?)

~(move,) = ID.

obsPos;4(ID) ~ gaussian(~(pos¢,41(ID)), cov).



Clauses in action (object tracking)



Key inference ideas

Relevant variables: SLD resolution
Informed search: importance sampling

Avoid invalid regions: constraint propagation

Y ﬁ given e

/T
Pr(q | Y = 3X+1)



From inference to planning



Specifying MDPs

State transition model: Var

.1 ~ Distribution < Conditions,

Applicable actions: applicable(Action), < Conditions,
Reward: reward(R), <— Conditions,
Terminal state: stop, <— Conditions,

stopt «<(type(X)t) = can.
reward(20)s <« stop:.

reward(—1): < not(stopg).



Can be over unknowns (e.g., find red can)

Removing blue
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An additional function
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Computing an optimal policy

evaluation
4 —(n

i q

Improvement

7(S) — argmaz,Q(s, a)



HYPE = Hybrid episodic planner

for each applicable action a in s;* do
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Evaluations

Domain Planner d Param. Reward Time (s)
gamel HYPE 5 M=1200 087£0.11 662
SST 5 C=1 0.34 £0.15 986
HYPE 4 M=1200 0.89£0.07 312
SST 4 C=2 0.79 £ 0.08 1538
game?2 HYPE 5 M=1200 0.67+0.18 836
SST 5 C=1 0.14 £0.20 1000
HYPE 4 M=1200 076 £0.19 582
SST 4 C=2 0.27 £0.22 1528
sysadminl HYPE 5 M=1200 0.94 £0.07 422
SST 5 C=1 047 £0.13 1068
HYPE 4 M=1200 098 £0.06 346
SST 4 C=2 0.66 £ 0.08 1527
sysadmin2 HYPE 5 M=1200 0.87 £0.11 475
SST 5 C=1 0.31 £0.12 1062
HYPE 4 M=1200 086£0.11 392
SST 4 C=2 0.46 £0.12 1532



Evaluations (2)

simplerover2 HYPE 8 M =200 11.8 0.2 38
SST 8 C= 114 +0.3 48
HYPE 9 M =500 1.7+ 0.2 195
SST 9 C= 11.3+0.3 238
HYPE 10 M =500 119 £ 03 218
SST 10 C= 112 +03 1043

marsrover HYPE 6 M=6000 2498 +33.5 985
SST 6 C=1 227.7 £ 273 787
HYPE M=6000 269.0+294 983
SST ) {=] N/A Timeout
HYPE 10 M =4000 2963 +19.5 1499
SST > 8 L= N/A Timeout

Cf. paper on results with relational abstraction



Outlook: open issues

Difficulty handling low probability observations
Guessing “good” proposal distributions hard

Bounds on computed values? (E.g., Safety-critical applications)



SAT and #SAT

Given a CNF formula,
- SAT: find a satisfying assignment
- #SAT: count satisfying assignments
(zVYy)A(yV—2)
- 5 models: (0,1,0), (0,1,1), (1,1,0), (1,1,1), (1,0,0)

- Equivalently: satisfying probability = 5/2>



Weighted #SAT

Polytime reduction from exact inference in discrete graphical models to weighted
#SAT

Think of (1,0,0) as sequence of one heads, two tails
Exact algorithms with strong runtime bounds

Approximate algorithms with strong certificates

ProbLog reduces inference computation to Weighted #SAT



Weighted #SMT (IJCAI-15)

Constraint propagation capabilities - ‘ g /\ = —/\—
Exact and approximate methods —] N/ N/
have been identified (a) constants (b) degree 1 (&) degree’3
Dealing with countably infinite values S s
(UA|-17) (2 +u)?/6 — 2 cu<g—1
(4—6u®-3u®)/6 —1<u<0

(4—6u®+3u®)/6 O<u<l

Use these methods to provide tight .
(2—u)’/6 l<u<?2

correctness characterisations?



Summary

HYPE works in a wide range of domains: discrete, continuous, hybrid, growing vs
shrinking state spaces

Systematically handles discovery of unknown objects
Exploits the probabilistic model and relational structure to provide fast solutions

Enables transparency and modularity of intricate stochastic specifications
(e.g., MDP part of larger pipeline)



