
Computer Systems Research at Edinburgh

The Computer Systems Group

Abstract

We introduce a new series of technical reports produced by the Computer

Systems Group within the Computer Science Department at the University

of Edinburgh. We consider the ethos of the group and its relationship

with the wider subject. Some highlights of past \systems" research in the

department are reviewed and the current interests of group members are

surveyed.

1 Computer Systems Research

The inauguration of a new report series begs the question \Why?". What should

the reader expect to �nd here which might not appear in an existing series? To

attempt an answer, it seems appropriate to consider what might be the nature of

\Computer Systems Research".

The range of disciplines which shelter beneath the umbrella of Computer Sci-

ence, both here in Edinburgh and elsewhere, is very wide. While it might be

possible to pick two super�cially disparate topics and search in vain for a sub-

stantial direct link between them, it is certainly a strength of the subject that

it is di�cult (and in any case highly undesirable) to draw isolating boundaries

around wider groupings, labelled \theory", \practice", \science", \engineering"

or whatever. Interaction across such boundaries is the lifeblood of the subject,

whether it occurs between smaller research teams, or within the work of indi-

viduals. In founding the report series of the Department's Laboratory for the

Foundations of Computer Science (LFCS), Robin Milner argues forcefully that [4]

\We reject any arti�cial barrier between theory and engineering in Com-

puter Science, and anticipate a healthy 
ow of ideas between the Labor-

atory and the Department as a whole."

With such a continuum in mind, we can de�ne \systems" research in terms of

a di�erent focus, on aspects of the subject which concern the design, capabilities

and performance of actual computer systems, rather than in terms of dividing

lines. In any piece of work we may expect to �nd in
uences from various points

on the spectrum.

As the name suggests, we hope that this series will act as a natural repository

for reports in which the dominant 
avour is of \system building" (of whatever

1



kind) but in recognition of the fact that such a categorisation is very loose, we

encourage the reader to browse the complementaryLFCS and Departmental series.

Just as the value of a theory can only be tested (and indeed properly developed) by

exposure to application, so good practice must be informed by sound principle. It

is in this spirit of interaction, exchange and interdependency that the new report

series is launched.

2 Past Highlights

The department has (we believe!) a long and distinguished history of systems

research which, over the years, has produced a number of signi�cant systems in a

range of areas. We now brie
y highlight a selection of these which we hope are

representative both historically and in breadth of coverage. It must be emphasized

that this is a selection, rather than a comprehensive catalogue.

2.1 The EMAS Operating System

The Edinburgh Multi Access System [2] developed in the late 1960's and early

1970's was a time sharing operating system, which originated in the department

and went on to support the University's main computing service for twenty years

on a variety of hardware including ICL 4/75, ICL 2900 and IBM XA compatible

machines.

2.2 The Fred Machine

The `Fred Machine' project [1] was active in the late 1970's and early 1980's.

Its focus was on the development of a 
exible computer system, in which the

emphasis was on the ability to con�gure and recon�gure soft and hard components

to meet varying computational demands. The central feature was the `Fred Bus' to

which other building blocks were attached as required. One popular con�guration

produced the `Advanced Personal Machine', a general purpose workstation much

used in the Department for both teaching and research for several years.

2.3 The Standard ML Programming Language

Standard ML [5] is a strict, functional programming language with all the powerful,

elegant features one would expect of such an artefact. It was developed within the

department (and latterly, more speci�cally in the LFCS) over a number of years,

particularly the early to mid 1980's culminating in 1987 with receipt of the British

Computer Society Technical Award. Extensions and developments are still active

areas of research (reported on in the LFCS report series).

2



2.4 VLSI Design Tools

In the early to mid 1980's a number of projects were active in the creation and

application of languages, tools and methodologies for the design of VLSI circuits.

As an example, the Con�gurable Array Logic (CAL) project emerged from a de-

partmental PhD thesis [3] and has since developed into a commercial \virtual

hardware" product. A simple programmable cellular array can be customised dy-

namically to produce fast implementations of specialised compute-intensive func-

tions.

2.5 The Posie Project

In the late 1980's and early 1990's, the Posie project [6] pulled together a number

of strands of research relating to the performance monitoring and scheduling of

parallel computations, particularly those expressed in a message-passing style.

A \testbed" parallel machine was constructed, with an emphasis on transparent

monitoring of processor and communication activity, and a number of scheduling

and load balancing schemes were investigated both by simulation and in practice

on the testbed and on the Meiko Computing Surface, a 400 transputer parallel

machine (one of the most powerful available at the time) housed by the Edinburgh

Parallel Computing Centre.

3 Current Interests

Members of the department currently associated with the group have interests in

many areas. We now provide a snapshot of current activities in order to illustrate

the breadth of coverage. In contrast to the preceding historical section, we do not

provide a reference list - the report series itself is intended to become a bibliography

of active research within the group. The activities have been arranged under

the headings \Computer Architecture", \Computer Graphics", \Human Factors

in Computer Systems Design", \Object-Oriented Database Systems", \Parallel

Software and Algorithms", and \Quantitative System Evaluation". Of course, the

categorisation is meant to be helpful rather than exclusive or de�nitive.

3.1 Computer Architecture

Architectural Simulation

A computer architecture and its implementation can be represented in a number of

ways and at di�erent levels of abstraction. At the highest level are multiprocessor

systems, while at the lowest an architecture consists of an ensemble of transistors

on a VLSI chip (or set of chips). A variety of simulators has been designed for

each di�erent level of abstraction, and some design tools can generate implement-

ations automatically at lower levels. The Hierarchical Architectural design and

3



Simulation Environment (HASE) allows designers to create architectural designs

at di�erent levels of abstraction, to explore designs through a graphical interface

and to invoke the appropriate simulator at each level. The output of a simulation

run can be used to animate the graphical display of the design, allowing the user

to visualise what is happening inside the architecture as programs are run on it.

Working at the processor architecture level, for example, a designer could invest-

igate bottlenecks in the 
ow of instructions and try alternative design strategies

to eliminate them.

The component parts of a computer can be treated very naturally as objects,

and so HASE uses the object oriented simulation language Sim++ and an object

oriented database, ObjectStore, to store both the object libraries and the designs

created from them.

High-Performance Computer Architecture

Computer Architecture is a continually evolving discipline. It embraces a wide

spectrum of activities in computer science: from the design of hardware com-

ponents, and the technology of integrated circuits, through the organisation and

structure of computing systems, to compiler and language issues, and ultimately

to the applications which use the resulting computer systems.

Our research in the area of high-performance computing is currently centred

around the notion of decoupled architectures. This is an implementation technique

for high-performance systems in which the activities of control-
ow management,

address generation and operation evaluation are partitioned across closely coupled

and highly specialised sub-processors. These represent a form of MISD archi-

tecture, and their principal goal is to overcome the ever-increasing discrepancy

between processor cycle times and memory latency. Work in this area involves

looking at not only the structures out of which one can construct such architec-

tures, but also at the decoupling behaviour of applications and the ways in which

new compilation strategies can be used to optimise the run-time characteristics of

decoupled systems.

Tools for investigating decoupled systems are under construction, and include

both a prototype compilation system and architecture simulators. These are be-

ing developed in order to discover the extent to which real-life applications can

be decoupled, and the extent to which compilation decisions for decoupled ar-

chitectures can be deferred until run-time. E�ectively, the memory system in a

decoupled architecture behaves as if it were part of the processor's pipeline, and

with large memory latencies there may be data dependencies within this extended

pipeline. Such dependencies interfere with the pipeline 
ow, and therefore need

to be avoided. However, in many cases, these dependencies cannot be resolved at

compile time but could be resolved straightforwardly at run-time. This is a prob-

lem similar to, but subtlely di�erent from, the traditional vectorization decision

problem, and new approaches to �nding e�cient solutions are being sought.

4



Evaluation of Multiprocessor Interconnection Networks

Message passing networks are now an established part of multiprocessor systems

design, with machines incorporating such networks being produced by a variety

of vendors. The networks used vary dramatically both in topology and protocol,

and in the design of the interconnect switching components from which they are

constructed.

In order to assess the relative value of these networks it is necessary to ascertain

the variation in system performance with changes in the network. It is inappro-

priate to run a simulation of a complete parallel machine, so in this project HASE

(see above) is used to set up a testbed containing simple processor models which

can generate network activity corresponding to that found in standard benchmarks

used in the evaluation of real parallel systems.

Full models of the various networks under test can then be instantiated in

the testbed and simulations run. This arrangement will allow both the impact of

di�erent networks on system performance and the utilisation of these networks by

di�erent algorithms to be assessed.

The knowledge gained will be used in combination with previous experience

gained in developing the Xbar network IC to determine the practicality of provid-

ing improvements in the network to enhance system performance.

Computational Nanotechnology

Molecular nanotechnology is predicted to remake technology from the bottom up

via the explicit control of atoms and molecules as building blocks. Nanoscale

molecular machines will be able to guide the placement of molecules and atoms,

enabling the construction of atomically precise materials and devices. While there

is debate about the time frame for developing molecular manufacturing capabilit-

ies, it is clear that computational tools can substantially reduce the development

time. Molecular computer aided design and modeling (CAD/CAM) software, and

related speci�cation tools, will allow \molecular engineering" to be planned and

analysed via computer before construction is undertaken, just as in other engin-

eering �elds. Research in this area involves the development of computational

chemistry tools for specifying, designing and modelling molecular machines at the

nanoscale level.

Vector Processing

The Sparse Project is concerned with the design and implementation of hardware

and software for a sparse vector processing system. The hardware is incorporated

into an existing workstation where it acts as an accelerator providing specialist

support for the processing of sparse vectors. The system is also being simulated

using HASE.

The project also involves work on compilers and on language extensions to

give programmers access to the sparse vector support mechanisms provided in

5



hardware. The applicability of these mechanisms to other types of computing is

also being investigated.

3.2 Computer Graphics

Current research interests include tree-based hidden surface removal, bidirectional

ray tracing, visualization and virtual reality. Close collaboration is maintained

with researchers in the Edinburgh Parallel Computing Centre. Work on BSP

trees concentrates on complexity issues of constructing good trees and in restruc-

turing trees for dynamic scenes. The visualization work proceeds in collaboration

with industry to investigate techniques for visualizing large datasets for di�erent

functional requirements. Current virtual reality interests include the modeling

and simulation of arti�cial environments, distributed simulations and integrated

frameworks for optimising visual detail. Most of this work is in conjunction with,

or strongly in
uenced by, researchers in the Virtual Environment Laboratory in the

Department of Psychology. Resources include immersive technology (e.g. Head

Mounted Displays) and non-immersive technology (e.g. a simple driving simu-

lator) in Psychology and a Silicon Graphics Reality Station in Computer Science.

3.3 Human Factors in Computer Systems Design

Human factors addresses the problems inherent in matching the functionality of

computer systems with the needs of their users. Understanding users and their

working environment is critical to the success of any computer system. Human

factors research has been instrumental in the improvements in system usability

achieved over the past decade. There are still signi�cant gaps, however, in our

understanding of user interface design requirements for many specialised applic-

ation environments. Moreover, advances in the individual user interface, and the

proliferation of desktop computing, have served to highlight the importance of

the group user interface. On a larger scale, the problems of ensuring that IT

fully addresses business objectives are growing in complexity. A recent survey

revealed that only a small proportion of commercial IT investment currently leads

to successful applications.

Human factors research is by nature inter-disciplinary. It covers themes ran-

ging from technologies and techniques for interaction, through user performance

and behaviour, to design methodologies, the study of innovation, and industrial

sociology. There are number of related active areas of research within the depart-

ment.

In the design of user interfaces and systems for computer-supported collaborat-

ive work, recent research has been studying the impact of computer mediation on

group processes such as the sharing of information and coordination of activities.

In the area of user interfaces for medical imaging applications, work is in pro-

gress on the human factors of computer-aided digital mammography. This project

6



is a collaboration with radiologists in the U.K. breast screening programme. It in-

volves the design and evaluation of speci�c user interfaces, and the detailed study

of work practices in screening mammography.

In collaboration with the University'sResearch Centre for Social Sciences, work

proceeds on organisational factors in the design and implementation of IT systems.

A major recent project focused on the problems companies face in meeting the

growing demand for specialist IT expertise, and in integrating it e�ectively with

the more traditional forms of business expertise such as that held by managerial

and administrative sta�.

Finally, improved user interfaces for parallel program development and per-

formance analysis tools are being investigated in collaboration with the Edinburgh

Parallel Computing Centre.

3.4 Object-Oriented Database Systems

In the past, database systems were passive repositories of data, limited in use to

areas such data processing. Object-oriented database systems have made it pos-

sible to apply database technology to new areas of computing. For example, we

are using object-oriented database systems in two research projects in the Depart-

ment, namely medical imaging and architecture simulation. These new application

areas have created a number of research issues. In particular, we are investigating

the possibilities for exploitation of the advanced transaction processing capabilities

of object-oriented databases to support distributed applications in a client/server

computing environment.

3.5 Parallel Software and Algorithms

Models of Parallelism

A model of parallelism is an abstract view of a parallel computing system, or more

appropriately a part of a system, obtained by removing details in order to allow one

to discover and work with the basic principles. Within the context of a hierarchy

of model types at di�erent levels of abstraction - architectural, computational

and programming models - research interests include the de�nitions of particular

models and the mappings between di�erent model types. The aim is to �nd a

means of bridging the gap between theory and practice of parallel computing.

Particularly desired system principles are cost-e�ectiveness and scalability.

The Hierarchical PRAM (H-PRAM) model is the main focus of work into

computational models. Based on this model, work in progress includes parallel

algorithm design and analysis, investigation into its relationships to overlying pro-

gramming models based on Algorithmic Skeletons, and mapping of the model to

parallel architectures as simulated by the department's HASE architecture simu-

lation environment.

7



Skeletal Parallelism

Many e�cient algorithms for message-passing parallel computers share common

patterns of data distribution, process distribution and communication. The com-

plexity of programming such machines can be reduced (for some problems) by

de�ning a library of such patterns of computation, expressed imperatively as equi-

valent sequential program skeletons, or declaratively as higher order functions.

Work in this area involves the collection of a set of such structures and an invest-

igation of the implementation decisions involved when a program is constructed

as a complex composition of several skeleton instances. When presented in a func-

tional context (for example as in the Bird-Meertens theory of lists) interesting

opportunities for program development by transformation arise.

Formal Methods of Parallelisation

Programming should be a problem solving activity. Issues that have nothing to do

with the problem should, if at all possible, not be the burden of the programmer

but should be part of the compilation process. In many applications, parallelism

and communication are implementation, not problem solving issues. In this sense,

they are `low-level' concepts like gotos or pointers, except that they are more

di�cult to use and verify.

There are classes of programs into which maximum parallelism can be infused

mechanically. The resulting parallel program emulates a systolic array. A systolic

array is a distributed network of sequential processors that are linked together

by channels in a particularly regular structure. Typical applications are highly

repetitive algorithms on large data structures such as those which occur in image

or signal processing, meteorology, etc.

Automatic methods distribute the operations of source programs that do not

specify concurrency or communication into time and space (systolic design). The

target descriptions of these methods are distribution functions that form an ab-

stract speci�cation of the systolic array. The array can then be re�ned into soft-

ware (i.e. into a distributed program) by a process of systolizing compilation or

into hardware (i.e. into a chip layout).

Current research includes (1) the systolization of application problems, (2)

classi�cations and extensions of systolic design methods and (3) the development

of systolizing compilation techniques.

The Dynamic Behaviour of Parallel Programs

It is di�cult for programmers to utilize parallel machines e�ectively unless they

are prepared to learn a considerable amount about the idiosyncrasies of each new

machine and spend time tuning up their programs for that particular environment.

The resulting programs are then not necessarily portable to a new environment.

Apart from the waste of time, the overheads involved in using parallel machines

8



have worked against their widespread acceptance by the general community of

applications programmers.

The aim behind the work described here is to underpin the design of operating

systems that would remove some of the burden from programmers by supporting

run time load-balancing. The hope would be that generally good performance

could be achieved, even if the performance was not optimal for any particular

program. However, to provide a �rm basis for design, it is �rst necessary to un-

derstand more about the run-time behaviour of parallel programs; to see whether

there are similarities, from a statistical point of view in the behaviour of various

types of programs, and to study the evolution of programs in time. Unlike most

performance studies of parallel programs, where the main interest has been to

minimize the execution times of particular programs by an investigation of the

detailed instruction sequences, this work is directed towards characterizing classes

of parallel program in terms of a small number of parameters which refer to global

properties of the program, like average process granularity, or average message

size. This approach works well for one of the simplest (and commonest) types of

parallel program with a �xed number of communicating processes. Good, quant-

itative predictions of performance in a given environment can be obtained from

empirically-determined formulae. It is also possible to relate the improvement that

can be brought about by run-time process migration to the parameter values of

the program model. These studies show that it is feasible to interpret performance

in terms of a very simple performance model, which can be extended to describe

time-varying behaviour.

Work is currently proceeding in a number of directions: extending the empir-

ical models to include parameters describing the machine environment, studying

the relation between probabilistic changes on individual processors and what is

observed on a macroscopic scale, and looking at the requirements for the design of

operating systems that are both provably correct and support good user program

performance.

3.6 Quantitative System Evaluation

Quantitative system evaluation is concerned with the capture and analysis of the

dynamic behaviour of systems such as computers, communication networks and


exible manufacturing systems. This involves the investigation of the 
ow of data,

control or goods within and between components of the system. The aim is to

understand the behaviour of the system and identify the aspects of the system

which are sensitive from a quantitative point of view.

The size and complexity of many modern systems result in large, complex

models. This has led to a renewed interest in simulation techniques and has stim-

ulated new work in the areas of compositional approaches to model construction;

model simpli�cation and state space reduction techniques; and e�cient solution

algorithms.

9



Functional Design and Performance Prediction

Historically, quantitative analysis and investigation of the temporal properties of

systems has been distinct from qualitative analysis which aims to establish the

functional behaviour of systems. However, recent work with stochastic process

algebras and the use of pure process algebra to study simulation models allow

these important approaches to integrated.

One such project concerns the development and application of Performance

Evaluation Process Algebra (PEPA), a stochastic process algebra for the design

of distributed systems. Used as a design tool, a stochastic process algebra encour-

ages the early consideration of the timing characteristics of computer systems.

PEPA has been used to model local area networks and multi-server/multi-queue

systems, representing performance information and functional information in a

single model.

The advantages of such an approach include the natural compositionality of

process algebra models and the availability of several novel approaches to model

simpli�cation and state space reduction which are based on equivalence relations

developed for the PEPA language. The novel combination of performance inform-

ation and functional information facilitates the study of the performance implica-

tions of the functional properties of a system: examples of these include computing

the mean time until deadlock or computing the optimal time-out of a service.

Reasoning about PEPA models proceeds by considering the derivation graph

obtained from the model using the underlying operational semantics of the PEPA

language. The derivation graph is systematically reduced to a form where it can

be treated as the state transition diagram of the underlying stochastic (in fact,

Markovian) process. From this can be obtained the in�nitesimal generator matrix

of the Markov process. A steady state probability distribution for the system can

then be obtained, if it exists. Alternatively, transient probability distributions

may be calculated.

Models can be analysed using the PEPA workbench: a set of simple tools

to allow a skilled user of the PEPA language to delegate to machine assistance

some of the routine tasks in checking descriptions and performing calculations of

transition graphs and rewards.

Future work will consider extensions of traditional model-checking approaches

for labelled transition systems to the multi-transition systems used to de�ne

stochastic process algebras.

Simulation Techniques

Work in improving the e�ectiveness of simulation modelling concentrates on easier

description of simulation models, especially use of graphical and hierarchical form-

alisms, on e�cient exploitation of simulation (and potentially other) models,

through the use of object oriented database technology to control experiment-

ation, and increasing integration with qualitative methods, such as protocol spe-

10



ci�cation languages and process algebras. These approaches are exploited to build

novel tools for modelling.

Applications of Performance Modelling

The application of performance analysis techniques is a central aspect of computer

systems research. Recent examples include the study of parallel program execution

using discrete event simulation, the design of e�cient process migration strategies

using specially built monitoring hardware and the modelling of heterogeneous

computer networks linked by FDDI rings.

Work is now beginning on evaluating and managing high bandwidth networks

using the asynchronous transfer mode (ATM) technology which is likely to be the

standard for high speed communication networks. It is desired to operate these

networks in a manner that ensures very low cell loss probabilities, of the order

of 10

�6

or less. This work deals with estimating the probability of such events,

using techniques from large deviations theory. The goal is to develop analytical

tools that enable the study of large systems starting from an understanding of the

behaviour of individual units.

Other related work includes the problem of pricing resources in multimedia

networks, so as to achieve e�cient and equitable sharing of resources between

diverse applications and empirical studies on real multimedia tra�c, designed to

test the validity of theoretical work in this �eld.

3.7 Very Large Scale Integration

The main themes of activity are Computer Aided Design (CAD) of VLSI circuits

and novel VLSI Architectures. CAD tools being developed include those involving

the use of formal techniques for synthesis and veri�cation of designs. Behavioural

(high-level) synthesis is also under investigation.

Formal Techniques

Current CAD tools for VLSI manage complexity by manipulating a structural

hierarchy. To manage the increasing complexity resulting from technological ad-

vances of VLSI fabrication, tools are required which can manage the hierarchy of

behavioural abstractions used in system design. A formal model which naturally

and accurately represents circuit behaviour is central to such tools.

Behavioural models with the generality necessary to describe behaviour at

many levels have been introduced by researchers studying formal veri�cation of

hardware designs.In this work, techniques from formal logic have been used to

establish the correctness of a circuit design by mathematical proof prior to fabric-

ation.

The major thrust of current research at Edinburgh involves the development,

in cooperation with industry, of practical formal models of digital behaviour, and

11



of the temporal and data abstractions employed in system design. This work is

applied to the development of sound design methodologies and to the development

of design tools for interactive and automated behavioural synthesis and veri�cation

of digital systems, both hardware and software.

Novel Architectures

A cellular array structure has been developed in which the array elements are

simple but con�gurable logic blocks. Not only is the function of each element

con�gurable, but also its communication with adjacent elements. The increasing

density of fabrication technologies means that increasingly large arrays of elements

can be fabricated, and so realistically-sized computations can be mapped onto the

arrays with large speed gains resulting from concurrency. Various applications of

arrays are being investigated, including the design of program-speci�c arithmetic

pipelines, the emulation of hypercube algorithms and the implementation of data

compression and encryption algorithms. This work develops the foundations laid

by the CAL project as reported in the \Past Highlights" section of this report.

References

[1] Brebner, G., and King, F. The Evolution of the Fred Machine. Technical

Report CSR{246{87, Dept. of Computer Science, University of Edinburgh,

1987.

[2] H. Whitfield and A. Wight. EMAS - The Edinburgh Multi-Access Sys-

tem. Computer Journal 16 (1973), 331{346.

[3] Kean, T. Con�gurable Logic: A Dynamically Programmable Cellular Archi-

tecture and its VLSI Implmentation. PhD thesis, University of Edinburgh,

Computer Science Department, 1989.

[4] Milner, R. Is Computing an Experimental Science? Technical Report ECS{

LFCS{86{1, Laboratory for Foundations of Copmuter Science, Department of

Computer Science,University of Edinburgh, 1986.

[5] Milner, R., Tofte, M., and Harper, R. The De�nition of Standard ML.

MIT Press, 1990.

[6] Pooley, R. Introduction to the Second Posie Report. Technical Report CSR{

6{90, Dept. of Computer Science, University of Edinburgh, 1990.

12


