
The POSIE Project: Studies to Support the

Design of Operating Systems for Multicomputers

Rosemary Candlin

June 12, 1995

Preface

This is a largely historical account of work that took place in the Computer Science

Department from 1988 to 1994 under the general heading of the \POSIE Project".

Many people were either directly or indirectly involved, and some who in no sense

could be described as project members made valuable contributions and appear

as co-authors on papers that arose out of the project. In fact, this was one of the

interesting things about POSIE { no-one was in charge, and the project group had

distinctly permeable boundaries. This situation contributed both to its strengths

and weaknesses!

The purpose of this report is not to provide technical information, although

brief excerpts of some of the main work appear here. A full bibliography of in-

ternal and external publications is given at the end, and those who want to �nd

out more can refer to them. There has also been no attempt to provide a biblio-

graphy of relevant work that was done elsewhere. All the published papers have

full bibliographies which will enable readers to track down references to work that

interests them. It was thought worthwhile to write an \overview" of POSIE, be-

cause in many ways, the di�erent aspects of the work add up to quite a substantial

contribution to the basic knowledge that should underpin the design of operating

systems for MIMD machines. It is not comprehensive in this respect, but provides

a useful starting point.

There are very many people who participated in the project, or generously gave

their time to talk about particular aspects of it. We must thank Roland Ibbett

for his support, particularly in providing the funds for construction of the Testbed

machine. We owe a special debt of thanks to Peter Lindsay who �nally got the

Testbed to work, and to the technical sta� who helped to construct it. We also

made use of machines in the Edinburgh Parallel Computing Centre, and thank

Prof. David Wallace, the previous Director, for permission to use these facilities.

1

Chapter 1

An Overview of the Project

1.1 Introduction

The POSIE project took shape as a result of co�ee-time conversations between

Rob Pooley and Rosemary Candlin. The title was an acronym that involved the

words \parallel", \operating system" and \environment", though it was never

entirely clear how they related to the letters \POSIE"! The aim was to provide a

focus for systems research in the area of operating systems for distributed-memory

parallel machines, and as the project developed, this took in not only hardware and

software construction, but simulation, formal methods and performance evaluation

methodology. The �rst year report [31] identi�ed these themes, and it is interesting

to see, now that the project as such is coming to an end, how fruitfully they have

been developed.

It seems worth while to provide an overview of research that has been done,

either under the POSIE umbrella, or in closely related �elds, and to draw these

individual strands together in one short report. Most of this work has been pub-

lished elsewhere, and a full list of papers and reports appears at the end, for those

who want more details. The project has been a fascinating example of research

with distributed control, and provides an interesting sociological case-study of the

strengths and weaknesses of collaborative, pure academic research. One of the

important characteristics of this project was that it was entirely funded internally,

and that there were therefore no external constraints to push it in one direction

rather than another. Another was that no one was \in charge", but a very large

number of members of the department contributed to it at one stage or another.

We start with an historical overview, and describe the various contributions of

sta� and students. In many cases, interesting lines of research were identi�ed that

were much wider in their application than just to this project. The way in which

the project developed was largely in
uenced by hardware implementation. This

proved to be much slower than we had hoped, but the delay had certain positive

e�ects, in that it diverted e�ort into software techniques which would perhaps not

have been so thoroughly investigated if the machine had been ready earlier on.

2

The other chapters give an indication of the variety of the work done during

the project: hardware monitoring, research on distributed operating systems, and

performance evaluation. We �nish with a critical evaluation of the project as a

whole. What was good about it? In what ways was it disappointing? Could we

have done it better with hindsight? What should we do next?

1.2 Background

Think back to 1988! Parallel machines were moving out into the public domain

and Edinburgh was setting up the EPCC (Edinburgh Parallel Computing Centre),

with the transputer-based Meiko Computing Surface as its main parallel platform.

The EPCC developed considerable expertise in adapting applications programs to

run e�ciently on its particular machine, but the user environment was primitive.

Computer Science made use of the Computing Surface for its MSc course in parallel

systems, and a number of MSc projects were based on it, but it was immediately

evident that it was quite di�cult for inexperienced programmers to write correct

and e�cient parallel programs. There was virtually no operating system, the only

programming language was occam and there were no pro�ling tools or software

support for program development. Some of the early MSc projects attempted to

address these questions, but it was clear that they required much more time than

an MSc student could give to them.

At the same time, departmental sta� who subsequently formed part of the now

more identi�able Computer Systems Group were looking for a research area that

might form a unifying theme for sta� and students in the department. Obviously,

we wanted this to develop out of our own interests, which at that point were

primarily in parallel systems and performance evaluation. But we also wanted

it to be at the practical end of \mainstream" computer science, involving the

construction and evaluation of real systems. Edinburgh had in a earlier period

been at the forefront of operating systems development, and we had a strong desire

that our research should be applicable in practical situations. A run through the

literature suggested that little progress had been been made on the question of

establishing design principles for operating systems for distributed memory parallel

machines. On the other hand, there were some areas of parallel systems research

that were strongly represented: for example, static task mapping heuristics and

parallelizing compilers. We did not want to compete in the areas where research

was already mature: in particular, we did not want to compete with what some

large, well-funded American groups were doing. This led us to identify the problem

which our research would attempt to address: how to construct an operating

system for a distributed-memory MIMD machine that should be both e�cient

and easy for a naive programmer to use. In other words, we wanted to make

life easier for the applications programmer by giving responsibility for e�cient

execution to the systems programmer.

We then had to consider what research would be required to underpin the

3

design of such an operating systems. We discuss this in more detail in Section

1.3. However, we must just mention here that we had to work under a number

of practical constraints. Although several members of the sta� were interested

in this proposed project, it was not necessarily their primary interest, and the

project aims had to be drawn rather loosely, in the sense of \contributing to un-

derstanding", rather than in terms of a de�nite set of \goals", \milestones" and

\products", so dear to the hearts of grant-giving bodies. Lack of �nancial and

technical resources meant that we could not be very ambitious in constructing

large hardware or software systems. Finally, we homed in on the idea of working

towards a better understanding of the execution-time behaviour of process-based

parallel programs, and of the interaction between applications programs and the

underlying operating system. We would build a small parallel machine with hard-

ware monitoring facilities so that we could make reliable quantitative performance

assessments. We would, concurrently, implement a simulation system and develop

models to give good performance predictions, and we would look at the possibility

of using formal methods to guarantee properties of our software. These themes

�tted in well with the expertise in the department, and would draw in a large

number of people to contribute towards the project.

1.3 Research Directions

1.3.1 Monitor Architecture

Hardware monitoring was seen as essential if we were to get reliable information

about the run-time behaviour of parallel programs, because of the short time-scales

for message transfer, and because instrumenting programs in software a�ects the

programs that are actually being measured. However, it would not have been

feasible to interface monitoring hardware to a commercial computer, even if we

had been allowed to interfere with a service machine to make such experiments. It

was therefore a necessity to have our own machine where we had complete control,

and, in the absence of any suitable existing candidate machine, this meant that we

had to do the construction ourselves. This in itself involved interesting research.

There were only a few existing hardware monitoring systems, and it was not clear

what were the most useful kinds of data to collect, how it was to be generated

or what the data rates were likely to be. There was also the question of the

interaction between the monitoring system and the operating system, because,

from the beginning, we envisaged that we would close the control loop by driving

load balancing algorithms from information supplied by the monitoring system.

The design therefore had to allow for future
exibility, because the machine (the

Testbed, as it became known) was seen as a vehicle for future research that was

not necessarily de�ned at the time of its construction.

Since we wanted to get the machine up and running as quickly as possible, we

based its construction on some existing designs. The processor board was based on

4

a design by Russ Green [13] and the interconnect on the Centrenet bus [15]. The

overall design was thrashed out by a group of interested people, amongst whom

were Tim Hopkins, Archie Howitt, Rob Pooley, Roland Ibbett and, expecially,

Kayhan Imre [16]. Tom Whigham did much of the actual construction and we

owe a special debt to Peter Lindsay, whose patient disentangling of faults and

careful redesign ensured that, �nally, and much behind schedule, the machine

actually worked as it should.

1.3.2 Software Systems

Our original intention was to measure user programs to a greater level of detail

than could be done with software monitoring, by taking the programs that had

been developed for the Meiko Computing Surface and running them on the Test-

bed. However, there were two reasons why our interests shifted over time. The

�rst reason was that the hardware took much longer to build than we had ex-

pected, and by that time the Computing Surface was being phased out in favour

of the Connection Machine CM2 with a completely di�erent architecture. The

second was that we found two other directions that seemed both more interesting

and more original than what we had initially intended to do.

The �rst of these was pursued by Kayhan Imre [16]. He developed ways of

interpreting event data, allowing the programmer to combine low-level events into

higher-level macro-events that could be related more easily to the structure of

the application program. Imre proposed a graphical language for processing event

traces and constructed a tool with good visualization facilities. This work was

directed towards helping the programmer to achieve faster performance by show-

ing up poor resource utilization. In addition to this substantial piece of work,

there were a number of smaller-scale CS4 and MSc projects [12, 17, 25, 28, 29],

supervised by D.K. Arvind, Rob Pooley and Rosemary Candlin, that were largely

directed towards the question of providing a more friendly environment for the

applications programmer. In addition, various researchers like Mark Davoren, Qi-

angyi Luo and Zhou Ji made contributions in this area. A list of project reports

and publications can be found at the end. A number of short internal papers are

grouped together in the two POSIE reports [31, 32].

The second important software theme concerned the construction of the op-

erating system itself. Originally, Brian Tompsett intended to adapt the existing

Manchester MUSS operating system for the Testbed, but this idea was abandoned

in favour of a purpose-built design. Our interests soon focused more closely on

the requirements for supporting process migration, and we realized that the Test-

bed would provide an ideal environment for detailed measurements on operating

systems functions, because the hardware monitoring facilities allowed costs to be

measured very precisely. It therefore seemed to us that here was something that

had not yet been done, that we were in a position to do, and that would be

valuable in itself: to make precise measurements of the costs of all the operating

system functions under a variety of di�erent user loads. Our interest here was not

5

so much in the actual �gures obtained for the Testbed as in understanding how

higher level costs (eg for a message transfer) related to lower level, hardware-based

functions. We would then be in a position to estimate the overheads introduced

by the operating system itself, and to look for ways of improving the e�ciciency

of its code.

Since one of our aims was to relieve the applications programmer of the burden

of handling process allocation, our operating system would have to implement run

time load balancing. This was not a new idea, since several such systems existed,

but more in the context of traditional distributed systems, with a number of inde-

pendent users and little interprocess communication. This environment was quite

di�erent from that on a more tightly-coupled parallel system, with lightweight

processes and high rates of interprocess messages. The timing characteristics were

quite di�erent too, since many of the existing operating systems were implemented

on top of Unix, and had neither fast nor reliable communications. We therefore

intended to study the suitability of various proposed load-balancing heuristics, to

see how appropriate they would be in our context.

It also appeared that little attention had been given to the question of elimin-

ating the risk that the output of a user program might be a�ected by migration.

We had thought at an early stage that formal methods might have a role to play in

this project, and had had some discussion with Stuart Anderson about the suitab-

ility of the formal speci�cation language Z for this purpose. Stephen Gilmore was

subsequently co-opted as a supervisor for Paul Martin's PhD work [18, 22]. This

addressed the problem of constructing a formal speci�cation for that part of the

operating system that was concerned with communication and process migration

and proving that user programs were una�ected by migration. Martin then went

on to measure operating systems overheads and to see how they depended on user

programs of various types. An interesting, generally-applicable by-product of this

research was the idea of relating performance metrics to schemas in the Z spe-

ci�cation, and seeing where constraints in a schema, imposed to ensure a certain

behaviour, impacted on performance [24].

1.4 Simulation

We were aware that construction of the Testbed might take some time, and that if

we wanted to get actual results on a shorter time scale, we would have to provide

an alternative way of performing experiments. To some extent, we were able to

make use of the Computing Surface for preliminary performance measurements on

communication patterns [2], but most of our serious experimentation was done by

simulation. A prototype simulator based on Rob Pooley's ideas had been construc-

ted by Thomas Guilfoy [14]. This was developed into a much more comprehensive

tool by Neil Skilling in Chemical Engineering [35], and was used both by him

and by Joe Phillips to investigate the e�ectiveness of static and dynamic process

placement strategies (full details are provided in their PhD theses [33, 30]). mimd

6

was interesting in that it was an example of an object-oriented simulator. This

enabled new classes for new types of program models and computer hardware to

be introduced very easily, and gave great
exibility in handling new requirements.

Its use was thus not restricted to simulating the execution of programs on the

Testbed or the Computing Surface, though in practice it was set up to model the

Computing Surface, which provided a means of validating simulator results.

Some interesting new developments came out of this work, which were much

more generally applicable than just to the POSIE project. One of the problems

in studying process allocation turned out to be the di�culty of �nding suitable

test programs: if one wants to �nd out whether a given allocation strategy is

e�ective over the whole range of programs, it is necessary to have a large sample

of programs with di�erent characteristics. But, in fact, most programs had been

parallellized with a particular platform in mind, and their original structure had

been lost. There was therefore a strong argument for using synthetic programs

with de�ned characteristics. This led on to the idea of parameterizedmodels which

could represent a very large range of di�erent run-time behaviours. It was pointed

out by Peter Fisk, then of the Statistics Department, that we should make use

of standard techniques of experimental design, such as factorial experiments, for

�nding appropriate models and for making quantitative estimates of the in
uence

of program parameters on performance. In fact, this proved an extremely helpful

suggestion. Skilling implemented a tool [34] for the automatic generation of the

large number of runs that were required for full factorial experiments. From the

analysis we could get immediate indications of what program characteristics were

important from the point of view of performance. We could thus relate perform-

ance to program characteristics, to allocation strategies and to the interaction

between them, in a way that would have been much more laborious, or indeed

impossible, without this systematic approach to experimentation. An overview of

some of the statistical techniques that we found useful can be found in [30].

1.5 The Dynamics of Process Migration

The study of process migration was perhaps the main theme of the work done

under POSIE. We have already mentioned Martin's work on the design of an

operating system which allowed migration to take place in such a way that the

user program was unaware that it was happening. This is obviously an essential

requirement if the person who writes a program to run on a parallel machine does

not have to take into account the fact that a process may move around during its

execution. However, this is just a �rst step: process migration must also speed up

execution, otherwise the overhead of moving processes will outweigh any bene�t of

better load balance. Martin himself made use of the Testbed monitor to compare

the usefulness of a number of indicators that had been proposed in the literature.

These had been used to select processors as donors or acceptors of processes. He

showed that the length of the run queue was by far the most useful metric in

7

selecting a donor processor, but that the best process to move was that with the

highest external communication rate, rather than the one that imposed the highest

load on the processor. He then showed in detail how the WATOR program (an

ecological simulation program much used in load balancing studies) evolved over

time and interacted with the operating system functions. Examples of Testbed

output are shown in Chapter 2.1.

Phillips carried out a complementary study with a di�erent intention. This

was one of an extensive set of simulation studies based on synthetic programs

with controlled parameter values. He was primarily interested in identifying those

characteristics of a program that made it likely that process migration would im-

prove performance. He found, for example, that for programs whose characteristics

did not change appreciably over time, he could relate improvement under process

migration to the value of the variance of process granularity, a property that could

be obtained by preliminary pro�ling of the program. He also made a study of the

detailed dynamic evolution of process movements for programs whose character-

istics changed with time. He con�rmed his results by measurements made on the

Computing Surface. This work is described in detail in his thesis [30]. Unlike the

Testbed, which is a bus-connected machine, processors on the Computing Surface

are connected by a low-valence interconnect, and the process-migration decisions

are made locally. Balance is thus achieved by a process of di�usion over the ma-

chine. Phillips was able to show that balance could be achieved very quickly on

16-processor domains, after just one or two migration attempts. The improvement

he achieved was comparable to that obtained by Martin on a machine with a very

di�erent architecture and with a di�erent algorithm.

Candlin was struck by the similarity between Phillips' graphs showing the evol-

ution of process migration in time and those produced by impulse-driven linear

dynamic systems. It was possible to describe overall system behaviour in terms

of the average load imbalance over the processors, and to represent the actions of

the process migration heuristic as that of a linear feedback controller. By consid-

ering a simple stochastic model, she was able to relate probabilistic changes on

processors to the process variance identi�ed as an important predictor by Phillips.

This work con�rmed previous results that indicated that certain, easily-obtained

\macroscopic" properties of parallel systems could provide useful indications of

their likely behaviour and performance [4, 3].

8

Chapter 2

The Testbed

2.1 Architecture

The Testbed is a distributed, message-passing multicomputer whose main features

are its dedicated monitoring hardware and �ne-grained, global clock. It is an ex-

ample of a \hybrid monitor", where events are generated by software, but collected

by special-purpose hardware. Such a monitor enables many detailed aspects of

performance to be captured dynamically and with great precision, without ap-

preciable disturbance of a running program. It is a single-user, diskless machine

connected to a workstation acting as a �le server on a LAN. The overall architec-

ture is shown in Figure 2.1: the machine consists of six Motorola M68010 processor

boards connected by a high bandwidth bus (Centrenet [15]). As can be seen from

this speci�cation, the Testbed was not exactly a massively parallel machine, even

at the time when it was �rst designed. However, there are many examples where

\modest" parallelism can be useful, in workstations for example, and the Testbed

results would be immediately relevant on this scale. But, in fact, the small scale

of the machine did not matter from the point of view of measuring operating sys-

tems functions, since link and processor load could easily be varied to simulate

the e�ects of various environments.

Figure 2.2 gives a detailed view of part of the monitoring system. The board

with the console and LAN connections is designated the \master"; the other boards

are \slaves". Event records are collected from the slaves and delivered to the mas-

ter where they can be aggregated and processed. The Slave Monitoring Interface

(SMI) on the left accepts 16-bit words written by the associated slave processor,

timestamps them from a global clock with a 2�s resolution and stores them in a

bu�er. The Master Monitoring Interface (MMI) polls each of the �ve SMIs in turn,

collecting �rst a timestamp and then the associated event. The monitoring bus

is only used by the Testbed operating system and not directly by the application

threads.

It is the operating system's responsibility to generate events, and it has con-

siderable
exibility in what it chooses to generate. It may generate events that

9

Operator’s

Terminal
Power Supply and Cooling Fans

Centrenet Bus

(Connects to all

Processors)

(Six) Monitoring

Interfaces

Boards

(Six) Processor

Monitoring Bus

(To LAN)

Figure 2.1: An overview of the Testbed.

FIFO

16−bit counter

SMI MMI

Monitoring Bus

FIFO

Address

Comparitor

Selector Clock

4−Bit Counter

Slave Processor Master Processor

DataAddressDataAddress Time Time

Figure 2.2: Design of the monitoring system

10

refer to its own operation, for example, recording when particular operating sys-

tems functions are called, or it may pass on information about a user program.

With suitable compiler options, requests for event generation can be planted in the

compiled code of a user program, and standard pro�ling operations conducted. In

fact, we were less interested in this possibility than in collecting information about

the low-level operation of the system. Typical events were therefore: sending a

message, receiving a message, starting a process, or terminating a process. The

master monitor could thus keep a record of overall system activity and see where

contention for resources was highest.

2.2 Some Typical Measurements

Some typical experiments are presented here (more details can be found in [18, 21,

20]). Some metrics were simple to obtain, eg, the time required for the operating

system to service a request for communication. Others were more complex|the

latency of a remote communication, for instance, depends on the latencies of each

of three phases of the inter-processor message transfer protocol. Figure 2.3 shows

the latencies of local (intra-processor) and remote (inter-processor) communica-

tion for a range of message sizes. The graphs have several features which may be

directly related to the implementation of the Testbed's communication routines.

The communication latency is broadly linear with message length, as would be

expected from the fact that the communication hardware is reliable and does not

perform resends. The local send latency has pairs of steps at 1 Kbyte intervals

which are caused by the block-copy routine crossing virtual memory page boundar-

ies in the sender's and receiver'smemory areas. Both types of communication have

setup costs, and the two graphs diverge because remote communication involves

three memory-block copies while local communication involves only one.

The next set of experiments shows how the system behaves under di�erent

types of user program. A synthetic test program was constructed to show the

various combinations of light/heavy computation/communication loads that a pro-

gram might impose on the system. On invocation, the test program creates several

threads on each Testbed processor. These threads communicate with each other

via a network of channels, some local and some remote. The test program passes

through eight distinct phases, with a single, master thread controlling the trans-

ition between phases by means of barrier synchronization. The di�erent phases

are designed to explore the extremes of dynamic behaviour, and are summarized

in Table 2.1.

Figure 2.4 shows how the length of the ready queue varies over �ve processors

(named earth, �re, water, air and space) as the test program moves through its

eight phases. These graphs show good agreement with the expected dynamic

behaviour of the program. It is obvious that the average ready queue length is

greater in the compute-bound phases 1 to 4 than in the other, communication-

bound phases. However, while this gives a good indication about competition for

11

0

10

20

30

0 1 2 3 4 5

tim
e

(m
s)

message length (Kbytes)

local send
remote send

Figure 2.3: The latencies of two operating system communication services.

1 Compute Local Short

2 " " Long

3 " Remote Short

4 " " Long

5 Communication Local Short

6 " " Long

7 " Remote Short

8 " " Long

Phase : : : -bound : : : communications : : :messages

Table 2.1: The eight phases of the test program (see Figs 2.4 and 2.5)

12

earth 0

5

air 0

5

fire 0

5

water 0

5

space 0

5

0 4 7 11 15 17 20 25 33

nu
m

be
r

of
 th

re
ad

s

time (s)

Figure 2.4: Length of the ready queue on each of 5 processors during the program

execution. Time is measured in secs.

processor resources it says little about the load on communication resources|the

short ready queues in phase 8 might, for example, have been caused by threads

blocking on �le input.

Figure 2.5 presents a better view of what is happening on the communication

network. This is in fact a bus, but Figure 2.5 presents results in terms of pairwise

communications between processors, which can more easily be interpreted in terms

of the test program. As would be expected, the remote communication in phases

3, 4, 7 and 8 is particularly clear. The relatively heavy communication at the

start of execution occurs as the threads are created on one processor and are then

distributed over the others.

It can be seen from these two sets of results that an accurate picture of program

execution, and of the demands that it places on the system resources, can be

obtained from the monitoring data. It is worth emphasizing once again, that

hybrid monitoring places a minimal additional load on the system, and that it

would be impossible to obtain such accurate and up-to-date results by software

monitoring.

The �nal graphs show results for a realistic application, the WATOR program.

This is a somewhat simpli�ed ecological simulation based on a grid of ocean points

where �sh and sharks are in competition with one another. A process handles a

�xed set of grid points throughout the simulation, which proceeds by a series of

iterative steps. By the end of each iteration, the grid points have been updated,

and boundary exchange takes place ready for the next round. Several processes

are initially assigned to each processor, but process activity varies as �shes and

13

50

100

150

0 4 7 11 15 17 20 25 33

lin
k

te
m

pe
ra

tu
re

time (s)

1-2
1-3
1-4
1-5
2-3
2-4
2-5
3-4
3-5
4-5

Figure 2.5: The number of pairwise remote communications per second

sharks breed and die o� and unbalanced loads soon develop. Figure 2.6 shows the

output during 100 simulation steps. The predominant feature is the succession of

�sh booms and busts. On the other hand, the communication load is very even

over the network, because the amount of boundary data exchanged is the same for

any pair of processes and all processors host the same number of processes (this

rather uninteresting graph is not shown here).

When load balancing is enabled, the situation changes. Figure 2.8 shows that

the ready queue lengths are now, on the average, shorter and more evenly shared

between processors. This means that the load balancer is performing correctly

and is distributing work sensibly. Furthermore, the execution time for 100 simu-

lation steps is now 600s, a 30% reduction over the case with no load balancing.

However, communication tra�c has now increased. Figure 2.9 shows several peaks

of almost 200 messages per second. While the load balancer does try to reduce

communication tra�c, it optimizes computational load �rst.

These results provide a justi�cation for the assumption that the operating

system can usefully manage run time load balancing and produce a noticeable im-

provement in execution speed. This looks promising from the user's point of view:

it is extremely tedious to implement process migration within a user program, and

a distraction from the main purpose of getting out results. However, if a user is

to have con�dence that the program will actually produce the same results as it

would when processes stay where they are initially loaded, the operating system

has to be able to o�er a guarantee that this will be the case. The work in the next

chapter describes an approach to solving this problem.

14

0

500

1000

1500

2000

2500

0 20 40 60 80 100

nu
m

be
r

of
 fi

sh

step number

ocean region 1
ocean region 2
ocean region 3
ocean region 4

Figure 2.6: Variation in number of �sh during 100 steps of the WaTor simulation.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900

re
ad

y
qu

eu
e

le
ng

th

time (s)

air
fire

water
space

Figure 2.7: Ready queue variation during 100 steps of the WaTor simulation

without load balancing.

15

0

20

40

60

80

100

0 100 200 300 400 500 600

re
ad

y
qu

eu
e

le
ng

th

time (s)

earth
air

fire
water
space

Figure 2.8: Ready queue variation during 100 steps of the WaTor simulationwith

load balancing.

0

50

100

150

200

0 100 200 300 400 500 600

lin
k

te
m

pe
ra

tu
re

time (s)

1-2
1-3
1-4
1-5
2-3
2-4
2-5
3-4
3-5
4-5

Figure 2.9: Variation in link load during 100 steps of the WaTor simulation with

load balancing.

16

Chapter 3

Operating System Design

3.1 The Formal Speci�cation

Many more details can be found in Martin's thesis or in [18, 19, 23].

3.1.1 Constructing a Model

The mechanism of process migration is a complex procedure in which processors

have to negotiate about the process to be transferred, and the process has to be

stopped on one processor, copied to another and restarted. Outstanding and future

messages then have to be delivered to the new address. There is scope for things

to go wrong because of wrong interleavings of the messages between the operating

systems on the sender and receiver processes. The �rst essential requirement,

therefore, is to ensure that communication is handled correctly, because both the

preliminary negotiation, and the subsequent process transfer depend on this. The

formal speci�cation therefore concentrates on the part of the system that handles

communication and migration. The development of a complete speci�cation is

an extremely lengthy business, and it was not possible to underatake it in the

time available. Nor was there time to do a formal re�nement of the speci�cation

down to the code|that was developed from the speci�cation by hand, according

to informal principles.

The Testbed's programming environment is represented in Figure 3.1. In this

example, four concurrent processes or \threads" of control execute on two slave

processors. Scheduling is pre-emptive, with compute-bound threads limited to a

20ms timeslice. Each thread can be uniquely identi�ed and threads communicate

via unidirectional, non-bu�ered channels. Channels are also uniquely identi�able

and are associated with the same pair of threads for the duration of the execution.

When a channel connects threads executing on the same processor, communic-

ation is e�ected by a single memory-to-memory copy, but when a channel con-

nects threads on di�erent processors, a protocol with multiple phases is required,

involving the transmission of typed messages over the Centrenet bus. Load bal-

ancing is performed by moving threads between processors. Formal methods are

17

Thread 1

Thread 2

Thread 3

Thread 4

PE 1 PE 2

Channel 3

Channel 1 Channel 2

Centrenet Bus

Master PE

Monitoring Bus

Testbed O.S. Testbed O.S. Testbed O.S.

Figure 3.1: An example application executing on the Testbed.

used to show that thread migration is, in certain important respects, safe and

correct.

Z was chosen as the formal speci�cation language. In Z, we can build a model

of the system in terms of sets and functions of given types, which have meaning to

the designer of the system, but which are not further de�ned. The speci�cation

describes the states of the system in terms of these sets and functions and various

predicates that de�ne invariants. This information is bundled up into a unit called

a state schema. In addition there are state-changing schemas which specify the

before and after values of state variables under a given state-changing operation.

Schemas provide a powerful, but not very easy-to-use, means of structuring a

speci�cation. In spite of this, Z had many good features from our point of view:

we wanted to be able to describe the state before and after a communication, or

before and after a migration, without going into details about how these operations

were carried out.

3.1.2 The Speci�cation

It is not possible to to go into the speci�cation in great detail: just a small part

of the Z model is presented to give the \
avour" of the speci�cation. This is

structured in terms of two conceptual levels. At the lower level, components of

operating system functions are represented. An example is the schema Send1

which models the mechanics of a step in the inter-processor communication pro-

tocol. At the higher level, schemas deal with the question of when an operation is

applied. For instance, the Send2 schema indicates that a Send1 schema is applied

18

only when a process's next instruction is to send a message.

We start by declaring basic types to represent processing elements, executing

threads and channels:

[PE ;THREAD ;CHANNEL]

Next we de�ne the state schema (for simplicity, only part of this is shown).

This forms the basis for the main part of the speci�cation which consists of state-

modifying operations.

State1

ready queue : PE $ THREAD

waiting sender ;waiting receiver : PE 7!

(CHANNEL 7! THREAD)

location : PE 7! (CHANNEL 7! PE)

The four identi�ers|ready queue, waiting sender , waiting receiver and location

represent well-known operating system concepts: they model the physical distribu-

tion of threads which are waiting to communicate, either as senders or receivers, on

given channels. This information is represented in terms of various mappings which

specify the relations between threads, channels and locations. When a thread t is

executing (or is in the queue waiting to execute) on the processing node modelled

by p, the pair (t ; p) will be included in the relation ready queue. When a thread

is blocked waiting to send a message over a communication channel c, a maplet

p 7! fc 7! pg is included in the waiting sender function (waiting receiver ful�ls

a similar role for receiver threads). When the Testbed has a channel connecting

a thread executing on processing element p

1

to another thread executing on p

2

,

there will be a maplet p

1

7! dfc 7! p

2

g in the function location.

Channel communication is implemented on the Testbed using three di�erent

kinds of message: \ready to send", \ready to receive", and \data". The �rst two

are used for
ow control, the third kind contains the actual data to be transferred

between threads. This can be represented by the generic message type MSG

MSG ::= rts j rtr j data

Now we look at the �rst part of a state-modifying operation which describes

the changes that take place when a thread requests to send data over a channel.

The schema Send1 is parameterized by having input arguments (identi�ers with

question marks) and output arguments (identi�ers with exclamation marks). The

declaration �State1 is a form of macro inclusion and introduces instances of the

variables de�ned in State1 in both normal unprimed and primed forms. The

unprimed variables represent components of the state before the operation. The

primed variables represent the state after the operation. Thus, Send1 de�nes the

primed variables of State1 and the output argument in terms of the unprimed

variables of State1 and the input arguments.

19

Send1

�State1

st? : THREAD

c? : CHANNEL

sp? : PE

msgs! : PMSG

c? =2 dom(waiting receiver sp?))

ready queue

0

= ready queue n fsp? 7! st?g ^

waiting sender

0

= waiting sender [

fsp? 7! fc? 7! st?gg ^

msgs! = if c? 2 dom(location sp?) then frtsg

else ?

The interprestation of this schema is that a sending thread st? executing on source

processor sp? is ready to send a message over channel c?. The output argument

msgs! is de�ned to be the (possibly empty) set of messages that are to be trans-

mitted to another processor by the network interface.

The predicate section de�nes constraints on this operation, and says what its

overall e�ect is to be. If there is no receiver thread currently blocked on the

channel c? at the sender's processor sp?, the sender thread st? will be removed

from the ready queue and placed in the wait queue. If the location of the other

end of channel c? is on a di�erent processor then a \ready to send" message is

added to the output variable msgs!, ready to be transmitted to the appropriate

processor. Note that this schema only says what happens when the sender is ready

before the receiver: the full speci�cation contains another, similar schema to say

what happens when the receiver is ready �rst.

At the higher level of the speci�cation, the new type REQUEST is introduced

to represent \send" and \receive" requests on a particular channel.

REQUEST ::= sendhhCHANNELii

j receivehhCHANNELii

The extended state schema (State2) encapsulates the notion of thread programs

as sequences of requests and speci�es that Send1 can only be applied if certain

preconditions are met, ie, that the sender thread st? is in the ready queue and

that st?'s next instruction is to send.

State2

State1

program : THREAD 7! seqREQUEST

20

Send2

�State2

st? : THREAD

sp? : PE

c? : CHANNEL

msgs! : PMSG

(sp?; st?) 2 ready queue

send(c?) = head(program st?)

Send1

3.1.3 Proofs

Proofs were in a \rigorous" style, and were lengthy, because a lot of di�erent

cases had to be considered. For example, only one instance of a communication

operation has been shown here (Send1), but in the full speci�cation there are

�ve others: a \request to receive" and four operations for exchanging status and

ow control messages between processing elements. So in this section we just give

an idea of how the proofs were tackled. The approach was to prove �rst that,

in the absence of migration, the communication protocol had certain desirable

properties. Then it was proved that migration preserves these properties. Proofs

proceeded by induction on the number of communications and the number of

migrations respectively.

We limit our task by considering only those sequences of operations on one,

arbitrarily chosen, channel|this is acceptable because channels are independent

of each other. We then limit the number of sequences by ruling out illegal sub-

sequences. For example, our model of communication has one-way channels so we

disallow sequences involving a thread that performs a send request and then a re-

ceive request on the same channel. We can express a restriction like this formally,

thus:

8State2; t : THREAD ; c : CHANNEL �

send(c) 2 ran(program t))

receive(c) =2 ran(program t)

We now enumerate possible subsequences of operations corresponding to a

single message transfer on a given channel. Here we consider one of the possible

subsequences for the �rst communication over a channel. We will assume that the

state has already been correctly initialized, and that the next message transfer

involves a send request followed by a receive request on the same processor. We

de�ne the state before the �rst communication as follows:

21

S0

c? : CHANNEL

State2

8p : PE � c? =2 dom(waiting sender p) ^

c? =2 dom(waiting receiver p) ^

c? =2 dom(location p)

Informally, this schema says that there are no senders blocked on channel c?, no

receivers are blocked on channel c?, and nothing is known about the locations of

the ends of channel c?.

We now de�ne the consequences of applying the Send1 schema to S0 in a new

schema S1:

S1

�State2

c? : CHANNEL

st? : THREAD

sp? : PE

msgs! : PMSG

st? =2 ran ready queue

0

(9

1

p : PE � c? 2 dom(waiting sender

0

p)) ^

(c?; st?) 2 waiting sender

0

sp?

(8p : PE � c? =2 dom(waiting receiver

0

p))

This schema says that the sending thread st? has been removed from the ready

queue and blocked on waiting sender at exactly one (9

1

) processing element p.

Furthermore, there is no processing element with a receiver blocked on channel c.

The second part of the subsequence, the receive request, is applied in the same

way to derive another state schema, S2 (not shown). We are now able to observe

from inspection of S1 and S2 that the communication subsequence has certain

desirable properties. For instance: S1 tells us that the sender was blocked, S2

tells us that data was communicated and the sender was unblocked, therefore we

deduce that communication involved synchronisation|a desirable property for our

model of communication.

The full proof proceeds by enumerating all other legal subsequences and by

showing in each case that the desired properties hold for the �rst communication,

and by induction for subsequent communications.

We now have to consider what happens when migration is allowed. A similar

enumeration of communication subsequences is performed and it is shown for each

subsequence that at whatever point a communicating thread migrates, the state

of channel before the migration is, in all essential aspects (a de�nition that has to

be spelt out), the same as the state of the channel after the migration. So we can

22

show that migration preserves desired properties of the communication protocol.

All in all, the proofs require some thirty pages of detailed (although somewhat

repetitive) working.

3.2 Performance and the speci�cation

By relating performance measurements to operation schemas, it is possible to to

see how constraints imposed in the predicate section of a schema in
uence per-

formance. If it turns out that an operation is apparently ine�cient, one can then

pinpoint the origin of the ine�ciency and see if it is safe to relax the constraint.

However, communication involves the execution of several operating system

functions, corresponding to several schemas. If threads on di�erent processors

are to communicate, for example, then the Send1 module, the receive request

modules and three inter-processor message modules are needed|something which

Z cannot represent easily. We can deduce legal sequences of schema applications,

as we did in the proofs section, but this does not provide a convenient way to

repesent actions at run time. We would like a more dynamic representation of

sequences of legal schema applications.

Finite state machines (FSMs) proved to be a more appropriate representation.

An FSM for a particular high-level operation can be derived from the speci�ca-

tion by considering the constraints on the state-changing operations imposed by

the predicates. The time required to execute each elementary operating system

function can be extracted from the event traces collected during the execution of

test programs on the Testbed. These times can then be attached to the arcs of the

FSM and total times for composite operating system services found by summing

along a path.

FSMs are a convenient and natural way to express performance results. Most

event traces are large and complicated, typically containing interleaved streams

of events from multiple pairs of communicating threads. The FSMs, however,

made it easy to construct parsers to extract times for particular modules. It

was then straightforward to identify the composite modules which imposed the

greatest overheads and to focus in on particular modules (and hence speci�cation

schemas) which accounted for a large proportion of those overheads.

23

Chapter 4

Performance Experiments

Most of the experiments described in this chapter were simulation experiments,

but a substantial amount of work was also carried out on the Meiko Computing

Surface. More details can be found in [30, 33, 4, 3].

4.1 Experiments on the Meiko Computing Sur-

face

The �rst studies were based on real programs running on the Meiko Computing

Surface. This was a transputer (T800) array that was physically divided into a

number of separate domains consisting of from 1 to 128 transputers. Most of our

work was done on 16-tranputer domains, which had reasonable availability, with

an occasional foray on to the 64-processor domain.

When we started the POSIE project, this was our only available \platform",

either real or simulated. However, it was a service machine and we were limited

in what we could do. We could only get restricted access to the machine, and got

little technical support when we wanted to get down into its low-level operation. In

addition, the unreliability of its hardware and software made program development

unnecessarily laborious. So we tended to use the machine largely as a means of

providing parameters for simulation models, and for validating results obtained by

simulation. Nevertheless, our experience was valuable, and con�rmed our feeling

that the missing link in parallel computing was the systems software. Although

new products like CS-Tools, which facilitated process placement, and Unix-like

operating systems became available subsequently, it was clear that their design

had not been based on any fundamental understanding of the run-time properties

of parallel programs. We therefore added a new research topic to our list: to

investigate the statistical properties of parallel programs. It seemed to us that it

would be a hopeless task to attempt automatic process allocation unless parallel

programs showed similarities in a statistical sense. On the other hand, if it turned

out that we could identify classes of programs, all of which had a similar pattern

of run-time behaviour, we would be able to look for a good allocation strategy

24

which had a high probability of working well for any program of the class.

4.2 Simulation Experiments

Our aim here was to get general results which applied to the whole population

of parallel programs. However, given that we were not sure when we started

that we would indeed be able to �nd similarities between sets of programs, we

thought we should be less ambitious and �rst study programs that were likely to

be well-behaved, and have reasonably stable properties over the duration of the

execution. We therefore �xed on occam-type programs for our investigations. In

fact, there were other good reasons for choosing occam programs. We wanted to

connect this work up with the POSIE operating system work, and it seemed to us

that it would be very much easier to construct an operating system that handled

process migration if we could assume that user programs conformed to the occam

conventions. Just to mention some of the good points: dynamic process or channel

creation is forbidden, there is no recursion and communications are synchronous.

This considerably simpli�es memory-handling because the sizes of process work

spaces are known at compile-time. The one-to-one, synchronous communications

means that there is never more than one outstanding message on a channel, and

thus eliminates the need for bu�er-handling. These restrictions are very helpful

from the point of view of proving safety properties of the system.

To �nd results that were applicable to the whole class of these programs we

wanted to work with random samples of synthetic programs, generated from from

a parameterized model. So the �rst task was to �nd a suitable parameter set, in

terms of which we could realistically characterize a program. It turned out that

characterizing programs in terms of the moments of the distributions of rather

obvious properties worked very well. Programs with the same parameter values

produced very similar performance metrics, whereas programs with di�erent para-

meters clearly had di�erent behaviour. However, it also turned out that some of

the parameters that we proposed had rather little e�ect on the resulting perform-

ance. Here for the �rst time was some quantitative evidence about the relative

importance of various, easily-obtained program properties.

To obtain our set of parameters, we started with a weighted process graph.

A node weight represents processing characteristics of the program, for example,

the time average of the number of instructions executed by the process between

channel I/O operations. An edge weight represents a communication property,

for example,the time averaged message length on a channel. The next step is to

compress the information in this graph, and summarize the weight distributions by

a small number of statistics. This gives us a manageable number of macroscopic

parameters for the graph as a whole.

By working backwards, we can generate synthetic programs that have preselec-

ted parameter values (details are given in [34]) and measure those performance

metrics in which we are interested, either on a simulator, or, in principle, on a

25

real computer. The great advantage of using this method is that we can choose

parameter levels in advance, and set up factorial experiments. Basically, the idea

here is that a relatively small number of experiments, each with a di�erent com-

bination of parameter (factor) values, can give the same amount of information

about a system as a much larger number of experiments in which only one factor

is allowed to vary at a time. Furthermore, factorial experiments give information

about interactions between factors which is not otherwise obtainable. Factorial

designs allow di�erent models to be explored quickly, and the relative importance

of the factors to be determined by an analysis of variance. In a two-level factorial

design, each factor can appear at either a high or a low value, and each run takes

a particular combination of high and low values of each parameter. A full factorial

experiment allows the contributions to the variance of a response variable to be

estimated for every factor, and for all interaction terms. A linear equation can

easily be �tted from the results, giving an empirical, quantitative relation between

a performance metric and factor values. This equation can then be used to predict

the performance of an arbitrary program whose parameter values are known. This

description refers to one of the simplest experimental designs|there are many oth-

ers, including multilevel factorial designs which allow polynomial equations to be

�tted.

This systematic approach, of proposing an empirical model, running factorial

experiments and analysing the results by standard statistical procedures proved

to be extremely useful. It allowed us to make quantitative statements of the form

\When process migration is implemented it improves such and such a metric by

so much, at the 95% con�dence level", rather than saying \These results suggest

that process migration improves performance".

The examples below show the results of some typical experiments, where the

factors have been taken as

fN ; c; �

cg

; �

cg

; �

mg

; �

mg

g

Here N is the number of process nodes and c the average node degree. These two

factors re
ect static, structural properties of the program. The parameters �

cg

and

�

cg

summarise the computational properties in terms of the mean and standard

deviation of the distribution over the graph of the time-averaged process granu-

larity (the number of instructions between successive channel communications).

The corresponding message length parameters are �

mg

and �

mg

. These parameters

indicate the level and variation in demand for resources over the program graph

averaged over the whole execution time. However, we make no attempt to repres-

ent the detailed instruction sequences, but generate random delays when we come

to simulate the program.

Our �rst experiment is designed to show whether we get similar results for

programs with the same parameter sets (and di�erent instruction sequences), and

di�erent results when the parameter values are di�erent. The performance metric

which is studied here is closely related to the percentage processor utilization,

26

Source D o F Sum of Squares Mean Squares F Ratio F Prob.

Between Replicates 2 0.00124 0.000621 1.013 0.366

Between Treatments 63 1.96 0.0311 50.273 0:001

Residual 126 0.0773 0.000613

Total 191 2.038

Table 4.1: Analysis of Variance Table for Percentage Utilization

and is a measure of how e�ectively the processors are kept working, and hence

of the expected execution time. A two-level full factorial experiment was carried

out with factor levels set to include those of a large number of real programs

and with several replicated runs for each combination of parameter values. Some

typical results are given, based on an analysis of the simulation experiments: they

consist of an analysis of variance table and an e�ects table. A certain amount

of explanation will now be given, so that the tables can be interpreted! Any

elementary statistics book will provide a fuller description.

An analysis of variance (ANOVA) is a way of processing experimental data so

as to be able to make formal statistical tests of signi�cance. Do di�erent para-

meter values lead to di�erent results, or can di�erences in results be attributed to

experimental error? An ANOVA is based on the idea of partitioning the variance

in di�erent ways. We �rst of all �nd the mean from the results for all the combin-

ations and all the replicates (the grand mean). We also �nd the group means for

each of the sets of replicates with the same parameter values. We then calculate

the sum of squared deviations of the replicates from their own mean, and of the

group means from the grand mean. To bring everything on to the same scale, we

have to divide by the degrees of freedom, the number of independent observations

in each set. The results are the mean squares, which will be about the same if

the di�erent parameters have no e�ect. The F ratio is to be compared with an

F distribution and gives the F probability that this result would have arisen by

chance.

The analysis of variance table for this experiment is given in Table 4.2. The

di�erences in mean values for replicates with the same parameter values are very

small whereas there are large di�erences when parameter values are di�erent. More

formal hypothesis testing on the F values shows that it can be accepted at a very

high con�dence level that replicates produce essentially the same result, whereas

there is a highly signi�cant di�erence between results for di�erent factor levels.

Now that this has been established, we can go on to �nd the size of the e�ects due

to the di�erent factors. The results of the analysis are shown in Table 4.2. The

lefthand column lists those factors that were set at their high values. The second

column shows the value that should be added to the overall mean (gm) when those

factors are high, the t-value has to be tested against a t-distribution in order to �nd

the con�dence interval for the e�ect, and the last column indicates the percentage

27

E�ect Estimate t-value % Var

(gm) 0.1557 87.0936

N 0.0505 28.27 24.05

�

cg

0.0128 7.15 1.54

c �

cg

-0.0114 -6.39 1.23

�

cg

-0.0783 -43.83 57.80

N�

cg

-0.0155 -8.65 2.25

�

cg

�

cg

-0.0140 -7.81 1.84

�

mg

-0.0122 -6.80 1.39

Standard Error = 0.00179

Table 4.2: Estimates of E�ects Contributing at Least 1% to the Variability of the

Response

of the variation that can be attributed to the e�ect. Positive e�ects correspond to

an improved utilization relative to the mean, and negative to reduced utilization.

We can draw some interesting conclusions from the e�ects table, and relate

them to our knowledge of the type of program and the machine environment. One

of the most interesting features is the lack of sensitivity to message length. This

may well be a consequence of the particular communications harness used and

the fact that transputers can overlap computation and communication, as we also

found the same thing on bigger domains of 50-60 tranputers. This identi�es one

set of program characteristics that we do not need to bother about{ at least in

this particualr environment. The other interesting characteristic is the predom-

inant importance of �

cg

as a predictor of performance degradation. One would

indeed expect processor utilization to drop as the value of �

cg

increased, because

this corresponds to a mismatch in process compute-times and hence increased

synchronization delays. In fact �

cg

also turned out to provide a useful indication

of how likely it was that a program's performance could be improved by process

migration. In a sense this is not surprising. We have already seen that to a �rst

approximation we can forget about message transfer overheads, and that perform-

ance is largely determined by good load balance. If we take a set of processes

and allocate them at random, but in equal numbers, to a set of processors, we

shall get good load balance if �

cg

is small. As it becomes bigger, however, there is

an increased probability of a variable load over the processors, and there is more

room for improvement by rearranging the processes. Experiment con�rmed that

process migration did actually improve performance, increasingly as �

cg

increased.

We were then able to go further, and �t equations relating performance metrics

to parameter values. It was interesting that we could do this sensibly, because

the parameters proposed above refer only to the program, and not at all to its

interaction with the machine. A comparison of observed and predicted results

28

showed that that the agreement was very reasonable, given the simplicity of the

model| about 8%.

Phillips also tried to �nd parameters that expressed the interaction between

program and machine and succeeded in getting an agreement within 5% between

observed random program executions and the predictions from his �tted equations.

The additional parameters could only be measured during the run of the program,

and would therefore not be so useful for initial predictions as those based purely

on program characteristics. They were however used to improve the e�ectiveness

of the process migration algorithm itself, by choosing migrating processes in such

a way as to improve the values of the parameters.

The experiments described above were some of the simplest, and are primarily

intended to give an idea of the methodology. The same approach was used in

other investigations, including an extensive set of experiments to study the ways

in which program parameters a�ected the usefulness of various static and dynamic

process allocation strategies. It should be pointed out that the actual numbers we

obtained from our experiments are speci�c to a particular machine environment,

and that they depend on such factors as the machine topology, the computation

to communication speeds, and the �xed overheads of message transfer. Also, of

course, we have only looked at one type program model, although it is a commonly

used one, and, with suitable parameterization, can represent a large variety of

run-time behaviour. However, the experimental approach is quite general, and

could be used to explore di�erent program models (of functional or object-oriented

languages, for example) and di�erent machine architectures.

A better understanding of the reasons why certain parameters were predomin-

antly important came out of Candlin's probabilistic modelling of of the migration

procedure. This showed how local changes on individual processes were related

to certain global properties like total number of processes moved. Earlier work

had shown that a \restricted random" mapping, where as far as possible equal

numbers of processes were loaded onto each processor, led to good performance

for most programs. If we assume that initally all processors have the same number

of processes and that the process weights are normally distributed, it is easy to

�nd the distribution of total load over the processors. Then we can show (with

certain simplifying assumptions!) that the variance of processor load decreases

approximately exponentially with each successive invocation of the migration al-

gorithm, and returns the system stably to a balanced state. This \systems theory"

approach leads to an intepretion of the dynamics of process migration. The sys-

tem as a whole (user program plus migration algorithm) can be thought of as the

convolution of the migration system with the instantaneous impulses produced by

changes in the user program which result in changes in the average load imbalance.

This leads to a possible way of predicting the performance of speci�c programs. In

principle, one could obtain an empirical time series model for a given program and

predict its output with a previously characterized, underlying operating system.

One of the interesting things that came out of this work was the usefulness

29

of working in terms of time and program graph averages. We had been doubt-

ful about whether we would get meaningful results by looking at programs at

such a coarse level of detail, but it turned out that useful predictions could be

made. Most of our results were obtained with random programs, which allowed

us to make inferences about the whole population of programs in the class that

we studied. Fortunately, the particular examples of real programs for which we

obtained measurements also fell within the same range of behaviour!

30

Chapter 5

Evaluation

5.1 Achievements

Since POSIE was a unifying theme, rather than a project with de�nite goals, it

is not really possible to evaluate it against a set of prede�ned criteria. However,

there were a number of concrete outcomes.

� A monitoring environment

The construction of the Testbed permitted performance measurements to

be made to a level of accuracy that would have been impossible on existing

commercial machines. In particular, accurate estimates of operating system

overheads could be made.

� Formal methods in operating systems design

The operating system for the Testbed was formally speci�ed, and had certain

guaranteed properties. The formal speci�cation provided a means of guiding

performance experimentation, and of interpreting results. This was a new

and original development in the software engineering of distributed systems.

In addition, the formal speci�cation de�ned a parameterization of operating

systems functions. Higher level functions like migration could be interpreted

in terms of lower level functions like message send, which were themselves

closely related to the fundamental hardware properties of the machine. This

would permit prediction of costs on a machine with di�erent hardware char-

acteristics.

� A framework for simulation experiments

A methodology based on parameterized program models and factorial ex-

periments was established and a tool implemented to support systematic

simulation experiments. Some of the purposes for which it was used were:

to �nd which program characteristics most in
uenced performance; to com-

pare heuristics for static process allocation; to �nd the best values for various

31

\tuning" parameters in a process migration heuristic; to �nd the character-

istics of programs whose performance could most be improved by process

migration.

� Performance models of parallel programs

Based on the experiments mentioned above, it was shown that it was pos-

sible to �nd empirical performance models with good predictive power. The

particular numerical values were speci�c to our given environment, but the

method used to obtain the results was quite general, and could be applied

to other machine environments.

Experimental results agreed with those from a simple analytical model,

which showed that parameters which were predominantly important exper-

imentally were also those that appeared in the analytical model.

The result of all this work was that we developed a very much better un-

derstanding of the execution behaviour of parallel programs, and of the relation

between that behaviour and observable macroscopic program properties. We could

see how this information could be usefully deployed in a load-balancing operating

system. In addition, we knew that it was possible to construct a system that sup-

ported process migration correctly. It was rather a disappointment that we did not

have an opportunity to put these ideas into practice by implementing an operating

system for a commercial parallel machine. This was because of the di�culty in

getting access for systems development and because it would not really have been

a suitable activity for graduate students. All the same, we were convinced that we

could have produced such an operating system, based on sound principles, rather

than on ad hoc testing and tuning.

5.2 A Bit of Sociology

One of our original intentions was that POSIE should get sta� tallking to each

other. It was very successful in this respect, as can be seen from the large number of

people whose names are mentioned in the introduction. It also provided a group for

new PhD students to join, and permitted MSc and even CS4 students to feel that

they were integrated into a departmental project. This was enormously bene�cial

during the �rst few years of the project. However, it was noticeable that the group

structure tended to dissolve as time went on. There were a number of reasons for

this. The healthiest, and perhaps the most natural, was that individuals developed

rather specialized research directions, and that they became more interested in

these than in POSIE itself. Since we had hoped that interesting research would

arise from the project once we got started, we were pleased with this development.

However, the other reasons were more worrying. The Testbed hardware took a

very long time to implement satisfactorily, and it soon became evident that it was

not safe to ask MSc or CS4 students to undertake projects that depended on the

32

reliability of the Testbed. Since we had hoped to provide a departmental facility

for short projects, this was one respect in which we failed to achieve our aims.

In addition, the Testbed itself began to seem out of date, and not suitable as a

platform for serious new research work.

The trends outlined above meant that POSIE did not continuously regenerate

itself, and that it came to an end when the original participants had completed

their work. However, it performed a very useful role in encouraging people to

talk to each other and to exchange ideas, at a time when systems research in the

department was fragmented. It also generated a useful number of publications, as

the bibliography shows.

It might be asked whether hardware design and construction were necessary to

this project. Could perhaps as much have been achieved, with much less anxiety,

and more quickly, if we had stuck to simulation? Certainly, a lot of useful results

were obtained by simulation, but, all the same, experiments on real hardware have

an authority that unsupported simulation lacks. There would have been some

things that we could not have done|the detailed performance measurements of

operating system overheads, for example|and that would have left a gap. In

addition, the construction of the Testbed allowed people with hardware skills to

participate in the project, and drew in members of the department whose interests

were in this aspect of systems development.

There is also the question of whether the project should have had stronger

leadership. This was actually more or less impossible in an academic department,

where people have to be persuaded to do things, rather than being told to do

them! In these circumstances, perhaps things turned out quite well. The various

research topics were mapped out by agreement at an early stage, and provided

a useful framework for subsequent work. Where it would have been useful to

have had a project leader was in the Testbed design and implementation work.

With hindsight, it was probably a mistake to base the machine on a number of

untested, inadequately documented, existing components. It would have been

more satisfactory, and probably quicker, to have gone for a purpose-built design

and a more robust construction method. Our experiences here suggest, that if we

undertake a project like this again, we should not try to cut corners, and that we

should be prepared to allocate a professional to oversee the project.

5.3 Future Work

As was mentioned above, it would be valuable to implement an operating system

for one or more modern, commercial distributed memory machines. Before doing

this we need more comprehensive performance models, which represent not only

program characteristics, but also the e�ects of machine architectures and run time

software. There seems no reason why this should not be done in the same way

as the experiments described in this report. However, it would be a substantial

undertaking and would require good simulation and analysis tools. We also need

33

a lot more measurements on the performance of user programs. We were not

able to do for POSIE because of lack of resources, but for an operating system

for serious use, we would need appropriate data for tuning mapping and load

balancing algorithms to suit the bulk of the applications programs.

As far as more speculative research is concerned, it would be interesting to see if

the results reported here would also apply to machines with a much larger number

of processors. It would be expected that communications properties would become

more important as domains got bigger, and there might be non-linear e�ects with

local hot-spots developing. There is scope for some interesting projects concerned

with the measurement and modelling of really large systems.

34

Bibliography

[1] R. Candlin, \Black Box Models of Parallel Programs", in Proceedings of

Transputers '94, Arc et Senans, IOS Press, 1994.

[2] R. Candlin and Q. Luo, \Communications Patterns in Occam Programs", in

Parallel Computing 89, Amsterdam, North Holland, 1989.

[3] R. Candlin and J.G. Phillips, \ The Dynamic Behaviour of Parallel Programs

under Process Migration", to appear in Concurrency: Practice and Experi-

ence, Special Issue on Dynamic Scheduling, 1995.

[4] R. Candlin and J.G. Phillips, \Statistical Modelling as a Tool for Studying

the Performance of Parallel Systems", Leeds Workshop on Abstract Machine

Models, 1993.

[5] R. Candlin and J.G. Phillips, \A Statistical Study of the Factors that A�ect

the Performance of a Class of Parallel Programs on an MIMD Computer",

International Conference on Decentralized and Distributed Systems ICDDS

'93, Palma de Mallorca, 1993.

[6] R. Candlin and N. Skilling, \ A Modelling System for the Investigation of

Parallel Program Performance" in Computer Performance Evaluation: Pro-

ceedings of Tools '91, Turin, Elsevier, 1991.

[7] R. Candlin, T. Guilfoy and N. Skilling, \A Modelling System for Process-

based Programs" in Proceedings of the European Simulation Congress, Edin-

burgh 1989.

[8] R. Candlin, Q. Luo and N. Skilling, \The Investigation of Communications

Patterns in Occam Programs", Developing Transputer Applications, Proceed-

ings of the 11th Occam Users' Group, IOS Press, 1989.

[9] R.Candlin, P.R. Fisk and N. Skilling, \A Statistical Approach to �nding Per-

formance Models of Parallel Programs" in Proceedings 7th UK Computer and

Telecommunications Performance Engineering Workshop, Springer-Verlag

Workshop Series 1991.

35

[10] R. Candlin, P.R. Fisk, J.G. Phillips and N. Skilling, \A Statistical Approach

to Predicting the Performance of Concurrent Programs", in Parallel Comput-

ing: from Theory to Sound Practice, Proceedings of the European Workshop

on Parallel Computing, Barcelona, IOS Press, 1992.

[11] R. Candlin, P. Fisk, J. Phillips and N. Skilling, \Studying the Performance

Properties of Concurrent Programs by Simulation Experiments on Synthetic

Programs", Proceedings of ACM SIGMETRICS and Performance, Newport

RI, 1992.

[12] D. Christie, Virtual Channels on the Meiko Computing Surface, M.Sc. Dis-

sertation, University of Edinburgh 1988.

[13] R. Green, The Design of an MC68010 Microprocessor System, M.Sc. Disser-

tation, University of Edinburgh, 1986.

[14] T. Guilfoy A Modelling System for POSIE, M.Sc. Dissertation, University of

Edinburgh 1988

[15] R. N. Ibbett, D. A. Edwards, T. P. Hopkins, C. K. Cadogan and D. A. Train,

\Centrenet| A High Performance Local Area Network", Computer Journal

28(3) 1985.

[16] K. Imre, A Performance Monitoring and Analysis Environment for Distrib-

uted memory MIMD Programs, Ph.D. thesis, University of Edinburgh, 1993.

[17] P. Marshall, A Tool for Parallel Program Design, M.Sc. dissertation, Uni-

versity of Edinburgh, 1989.

[18] P. Martin, Adding Safe and E�ective Load Balancing to Multicomputers,

Ph.D. thesis, University of Edinburgh, 1994.

[19] P. Martin, \The Formal Speci�cation in Z of Task Migration on the Testbed

Multicomputer", Computer Systems Group Report ECS-CSG-2-94, Depart-

ment of Computer Science, University of Edinburgh, 1994.

[20] P. Martin, \The Performance Pro�ling of a Load Balancing Multicomputer",

Computer Systems Group Report ECS-CSG-3-94, Department of Computer

Science, Edinburgh, 1994.

[21] P. Martin and R. Candlin, \The Bene�ts of Dedicated Monitoring Hardware

for Evaluating Load Balancing", UKPEW '94, Proceedings of the 10th UK

Workshop on Computer Performance Evaluation , Edinburgh, 1994.

[22] P. Martin and S. T. Gilmore, \Pragmatic Experience of the Formal Speci�ca-

tion of a Distributed Operating System", Proceedings of the 5th International

Conference on \Putting into Practice Methods and Tools for Information Sys-

tem Design", Nantes, 1992.

36

[23] P. Martin and S. T. Gilmore, \Correctness Issues in the CommunicationProb-

lems of a Task Migration Algorithm", UKPEW '94, Proceedings of the Tenth

UK Computer and Telecommunications Performance Engineering Workshop,

Edinburgh, 1994.

[24] P. Martin, R. Candlin and S. Gilmore, \Correctness and Performance of a

Multicomputer Operating System", Proceedings of the IEEE International

Computer Performance and Dependability Symposium IPDS '95, Erlangen,

1995.

[25] M. Melachrinidis, Position Independent Occam Programs, M.Sc. dissertation,

University of Edinburgh, 1989.

[26] J. Phillips and N. Skilling, \A Modelling Environment for Studying the Per-

formance of Parallel Programs", in Proceedings of the Seventh UK Computer

and Telecommunications Workshop, Edinburgh, 1991.

[27] J. Phillips and R. Candlin, \An Environment for Investigating the E�ect-

iveness of Process Migration Strategies on Transputer-Based Machines, in

Proceedings of the World Occam and Transputer Users' Group Meeting 15-

Ongoing Research, Aberdeen, IOS Press, 1992.

[28] V. Rebello, A Tracing Tool for POSIE, Honours project report, Department

of Computer Science, Edinburgh, 1989.

[29] P. Roberts, An Occam 2 Compiler for POSIE, Honours project report, De-

partment of Computer Science, Edinburgh, 1989.

[30] J.G. Phillips, A Statistical Investigation of the Factors In
uencing the Per-

formance of Parallel Programs, with an Application to the Study of Process

Migration Strategies . Ph.D. thesis, University Edinburgh. 1994.

[31] R.J. Pooley and R.Candlin (eds)The POSIE Project Annual Report, Com-

puter Science Department Report CSR-284-88, Edinburgh, 1988.

[32] R.J. Pooley (ed)The Second POSIE Report (misleadingly called\Introduction

to the second Posie report"), Computer Science Department Report CSR-6-

90), Edinburgh, 1990.

[33] N. Skilling, A Statistical Approach to Performance Evaluation of Parallel

Systems with Reference to Chemical Engineering, submitted for the degree of

Ph.D., University of Edinburgh.

[34] N. Skilling, eg, University of Edinburgh, Department of Chemical Engineer-

ing, Internal Report.

[35] N. Skilling, mimd, University of Edinburgh, Department of Chemical Engin-

eering, Internal Report.

37

