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Abstract

Query optimization for sequential execution of non-recursive queries has reached a high

level of sophistication in commercial DBMS. The successful application of parallel processing

for the evaluation of recursive queries will require a query optimizer of comparable soph-

istication. The groundwork for creating this new breed of query optimizer will consist of a

combination of theoretical insight and empirical investigation. Restricting our attention to

linear recursive queries, we illustrate this process by developing a family of query processing

strategies and, through experiments on a parallel computer, obtaining the basic information

needed for an optimizer's heuristics.

1 Introduction

Query optimizers for commercial DBMSs are very sophisticated in their ability to �nd reasonably

e�cient execution plans for non-recursive queries computed on a uniprocessor. In such queries,

the cost of performing the joins dominates the total cost and the optimizer must choose

(a) an order in which to execute the joins and

(b) for each join, an appropriate join technique (e.g. nested loop or sort/merge).

Two trends in database technology, namely parallel computing and the introduction of recur-

sion into query languages, have made the task of query optimization much harder. Parallel

computing has added an extra dimension to the optimization problem because the optimizer

may have to decide on the computational resources to be allocated to each database operation

and it may also have to decide on which sets of operations may be executed concurrently.

There are good theoretical and practical grounds for believing that recursive queries may be

harder to optimize. Intuitively, a non-recursive SQL-query can be represented, for optimization

purposes, as an algebraic expression with a �xed number of join operations, whereas a recursive

query may, in general, require a data dependent number of join operations and/or additional

1



operations, such as transitive closures, which may be even more computationally expensive than

join operations.

Much research has been published on the subjects of

(a) exploiting parallel computing in query processing, e.g. in [KM91], [AJ88], [VK88b], and

(b) techniques and operators for recursive query processing, e.g. in [Agr87], [IW91], [JAN87],

[Nau87], [NRSU89], [Sag88], [VB86], [VK88a], [YKLH92] and many others.

Furthermore some research has also examined the application of parallel computing to recursive

query processing [CW89].

In order to bring this work into the mainstream of commercial DBMS query processing, it is

necessary to develop an appropriate query optimizer. The di�culty of this class of optimization

problem means that such an optimizer is likely to be driven by heuristics. The parameters for

such heuristics may have to be obtained from observing the performance of the algorithmic

technique on the target parallel computer. We illustrate this process in the case of linear

recursive queries.

After some outlining comments about linear recursion { probably the most common class of

recursion in queries [BR86] [JAN87] [YKLH92] { section 2 concludes with an example of a linear

recursive query which is su�ciently general to show the relevant computational properties of

two processing techniques, namely

� bottom-up evaluation (section 3) and

� transitive closure evaluation (section 4).

The transitive closure evaluation is used in our parallelization of the technique presented by

Jagadish et. al. [JAN87]. These two techniques are used in section 5, where we describe a

generation matrix model of query processing. In this model, the subcomputations required to

process the query are laid out in the form of a gameboard and each query processing strategy

corresponds to a particular traversal of this gameboard. The model provides a framework for

analyzing processing strategies and for involving several e�ciency issues such as parallelism

and optimization features. The cost model presented in section 6 identi�es the most important

parameters that a�ect query processing performance or, in terms of the model, the costs of a

move. In section 7 we give performance results obtained from an experimental implementation

on a Connection Machine CM-200. Results are given for varying over three parameters:

� the length of the longest path in the underlying database relation (section 7.1),

� the number of transitive closures to be computed (section 7.2) and

� the data skew in the source and destination attributes (section 7.3).

Finally the paper is concluded in section 8.

2 Linear Recursion

In this paper, we are concerned with queries to relational databases where the user wants to

interpret some of the data as a graph structure. In its simplest form, there will be a pair of

columns in a table in which the entries are interpreted as the names of graph vertices and, for
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each tuple in the table, the sub-tuple corresponding to this pair of columns represents an arc

in the graph.

Assume that we have a table, Flight, with four columns, Airline, Flight, From and To.

Suppose that we want to know which cities are accessible from each city in the From column.

Consider the following query

1

:

Example 1: Accessibility.

C(X;Z) = Flight(A; F;X; Z)

C(X;Z) = C(X; Y ) 1 Flight(A; F; Y; Z)

This program is a representation of a simple graph connectivity problem which may be com-

puted by a transitive closure operation. A well-known observation is that such a computation

cannot be represented by an algebraic expression in which the operators are drawn from the

traditional repertoire of relational algebra [AU79]. Of course, this observation is only import-

ant if one needs to manipulate algebraic expressions. A transitive closure computation could

be performed by repeated joins, although the number of such join operations would be data-

dependent.

If we give a logic programming style of representation to our queries, then we can say that a

query is linear recursive if there is at most one subgoal of any rule that is mutually recursive with

the head. Several authors have noted that linear recursive queries may be evaluated e�ciently

by using special-purpose evaluation techniques that cannot be applied to the more general class

of recursive queries. Several such techniques are discussed in Ullman [Ull89].

Not all queries can be expressed as linear recursive queries. Consider the following example

of a Datalog program.

Example 2: Path system accessibility.

Access(Z) = Source(Z)

Access(Z) = Access(X) 1 Access(Y ) 1 Triple(X; Y;Z)

Here, the predicate names Source and Triple are assumed to correspond to tables stored in the

database and the query computes the intensional relation Access. The Path System Accessibility

problem is used by Afrati and Cosmadakis [AC89] as an example of a query that cannot be

computed by any linear recursive Datalog program.

Thus linear recursive queries form an interesting class of queries that are strictly less express-

ive than the class of recursive queries in general, and yet which appear to me more expressive

1

These are Datalog equations [Ull88]. Throughout this paper we rather prefer describing the queries by using

relational algebra operators to make the reader aware of the operations that are involved in query processing

although the resulting expressions are in `Datalog style', i.e. we use Datalog-like notations like P (X;Y;Z) and

refer to attributes in the relation P by variables X;Y; Z. This also simpli�es the notation of a join as the join

conditions can be easily derived by matching the variables. Therefore we just denote a join by 1 without giving

the conditions explicitly. This notation is a hybrid of relational algebra and logic programming notation.

Using relational algebra expressions suggests that the techniques proposed in this paper can be applied to a wide

range of query languages and not only to Datalog.
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than the class of recursive queries that may be computed by a transitive closure. This last

remark requires some quali�cation.

As has been noted by Jagadish et al. [JAN87] and Ullman [Ull89], we can compute a linear

recursive query with a single transitive closure operation, but the underlying graph structure is

not the one obtained simply by extracting the the `from' and `to' columns of the rows. The vertex

set is potentially much larger as vertex names must be quali�ed with additional information;

look at the following example.

Suppose that an awkward customer insists that for each 
ight in his/her journey, the airline

must be the same, but it does not matter which airline is used. The following Datalog program

provides the answer to this version of the accessibility problem.

Example 3: Accessibility by the Same Airline.

CA(A;X; Z) = Flight(A; F;X; Z)

CA(A;X; Z) = CA(A;X; Y ) 1 Flight(A; F; Y; Z)

The Datalog program in example 3 can also be computed using a transitive closure operator.

However, this process is not as straightforward as in example 1. We have a choice between (a)

executing one transitive closure operation for each airline and (b) constructing a much larger

graph in which the names of the vertices are formed from a pair (A;X), where A is the name

of an airline and X is the name of a city.

In this paper, we develop a family of parallel strategies for the sequential technique described

in Jagadish et al. [JAN87]. This enables us to avoid the large graph structure described by

Ullman [Ull89], replacing it with a collection of smaller transitive closure operations which may

be computed in parallel.

Consider the linear recursive query in example 4, below. Sections 3 and 4 will then present

two strategies for evaluating this query. Although such an example cannot claim to cover every

aspect of query processing we rather prefer this way to give the reader the basic ideas behind the

processing model that is presented in section 5 of the paper. Apart from that we can claim that

the following example is su�ciently general to emphasize the important issues of linear recursive

query processing as the linear recursive rule is in, what Jagadish et al. call, the canonical form

for transitive closure. Every linear recursive rule can be transformed into this form. This form

is essential for applying the transitive closure technique of section 4 but it is not necessary for

the naive bottom-up evaluation presented in section 3.

Example 4:

P (X

1

; X

2

; Z) = E(X

1

; X

2

; Z) (1)

P (X

1

; X

2

; Z) = P (X

1

; X

2

; Y ) 1; Q(X

1

; Y; Z) (2)

We will refer to (1) as the exit rule or exit equation and to (2) as the linear recursive

rule/equation of the query.

For our purposes we can assume X

1

; X

2

; Y; Z to be single arguments but there is no problem

to consider them as lists or ordered sets

2

of arguments.

2

which implies that there are no repeated arguments. This assumption is no restriction because repeated

arguments can be easily projected out from the canonical form and replicated after the essential query processing

steps have been performed. The interested reader might refer to [JAN87].
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3 Bottom-Up Evaluation

As is well known, a linear recursive query may be evaluated `bottom-up', i.e. starting with the

initial relation given by the exit rule further tuples are added by applying the linear recursive

rule until no more new tuples are added. We will describe this process using the example 4.

For the purpose of a bottom-up evaluation the rules (1) and (2) are used in the following

way:

1. The initial tuples are given by the exit rule (1). These tuples are said to be of generation

P

0

so

P

0

(X

1

; X

2

; Z) = E(X

1

; X

2

; Z)

2. Further tuples are added by sequential applications of equation (2) to produce the gener-

ations P

1

, P

2

, : : : :

P

i+1

(X

1

; X

2

; Z) = P

i

(X

1

; X

2

; Y ) 1 Q(X

1

; Y; Z)

Therefore a bottom-up evaluation produces the generations P

i

of tuples in a sequential order

starting with the initial relation E as P

0

and joining Q in each step:

P

0

(X

1

; X

2

; Z) = E(X

1

; X

2

; Z)

P

1

(X

1

; X

2

; Z) = E(X

1

; X

2

; Y ) 1 Q(X

1

; Y; Z)

P

2

(X

1

; X

2

; Z) = E(X

1

; X

2

; Y

1

) 1 Q(X

1

; Y

1

; Y ) 1 Q(X

1

; Y; Z)

P

3

(X

1

; X

2

; Z) = E(X

1

; X

2

; Y

2

) 1 Q(X

1

; Y

2

; Y

1

) 1 Q(X

1

; Y

1

; Y ) 1 Q(X

1

; Y; Z)

: : :

Finally the resulting relation P of the query is obtained by

P =

[

i�0

P

i

=

M

[

i=0

P

i

such that

P

j

�

M

[

i=0

P

i

for all j > M (3)

which means that all P

j

with j > M do not contribute any new tuple to P . The existence of

such anM is guaranteed [Ull88] [Ull89]. When we refer toM in this paper then M is considered

to be the smallest number such that (3) holds.

The notion of representing the resulting relation as a set of generations of tuples is quite

useful. Note that a generation is a set of tuples that were generated in the same way and

generations do not have to be disjoint as some tuples might be derived in several ways. The

union of all generations represents the result of the query. In �gures in this paper, the set of

tuples in a generation shall be represented graphically as a square.

A bottom-up evaluation can then be considered as producing a chain of generations, up to

generation M , as in �gure 1 where we get generation P

i+1

by applying the linear recursive rule

(or equation) to generation P

i

.

We note that a bottom-up evaluation requires M join operations where M depends on the

characteristics of the underlying data relations.
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0 1 2 3

� � �

M

?

P

3

(X

1

;X

2

; Z) = P

2

(X

1

;X

2

; Z) 1 Q(X

1

; Y; Z)

Figure 1: Graphical representation of a bottom-up evaluation producing a chain of tuple-

generations.

4 Transitive Closure Evaluation

The example of section 3 shows that evaluating linear recursive queries can be done by com-

puting a number of equi-joins involving the relation Q. If we look at the Datalog equations to

compute a generation P

i

we can see that the chain of joins on Q represents computing a kind

of transitive closure:

P

i

(X

1

; X

2

; Z) = E(X

1

; X

2

; Y

i

) 1 Q(X

1

; Y

i

; Y

i�1

) 1 Q(X

1

; Y

i�1

; Y

i�2

) � � � 1 Q(X

1

; Y

1

; Z)

= E(X

1

; X

2

; Y

i

) 1 Q

i

(X

1

; Y

i

; Z)

with

Q

i

(X

1

; Y

i

; Z) = Q(X

1

; Y

i

; Y

i�1

) 1 Q(X

1

; Y

i�1

; Y

i�2

) 1 Q(X

1

; Y

1

; Z)

In fact if we had all the Q

i

's for i = 1; : : : ;M we could easily compute all the P

i

's:

M

[

i=1

P

i

=

M

[

i=1

E 1 Q

i

= E 1

M

[

i=1

Q

i

so the result, P , of the query could be computed by

P =

M

[

i=0

P

i

= E [

M

[

i=1

P

i

= E [ (E 1

M

[

i=1

Q

i

)

We note that the union of the Q

i

(X; Y; Z) seems to be a transitive closure with Y as the source

and Z the destination attribute. The problem is that there is also the X attribute so we can

only combine tuples (X; Y; Z) with equal X-values. This results in transitive closures for every

single value of attribute X : Let fa

1

; : : : ; a

T

g be the values of the X attribute in Q(X; Y; Z) and

Q

a

j

(Y; Z) = �

Y;Z

(�

X=a

j

(Q(X; Y; Z)))

The Q

a

j

's are the relations comprising the set of (Y; Z) subtuples of Q(X; Y; Z) that are asso-

ciated with the X-value a

j

:

Q(X; Y; Z) =

T

[

j=1

(fa

j

g �Q

a

j

(Y; Z))

So we can compute the union of the Q

i

's by computing the transitive closures of the Q

a

j

's

[

i�1

Q

i

=

T

[

j=1

(fa

j

g �Q

+

a

j

)
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where Q

+

a

j

denotes the transitive closure of Q

a

j

. Finally the result P of the query can be

obtained by

P = P

0

[ (E 1

T

[

j=1

(fa

j

g �Q

+

a

j

))

Essentially the processing technique shown in this example can be applied to every linear

recursive query although there exist linear recursive queries that must be transformed into the

canonical form of the query in the example so that the transitive closure technique can be

applied [JAN87]. We avoid presenting the transformations and the processing algorithm in

detail. The reader might refer to [JAN87] or [ZT93].

To show in which way the resulting relation P of a query is computed using the transitive

closure technique we will present the essential steps and give a graphical representation of the

method in section 5:

1. The substitution graph of the linear recursive rule of the query is analyzed and two

characteristic parameters g and d are obtained. Appendix A gives two lemmas and a

theorem [ZT93] to get the optimal values for g and d.

2. Let r be the linear recursive rule. We let r

d

denote d applications of r and refer to r

d

as

the d-step rule. r

d

is itself linear recursive. [JAN87] shows that a linear recursive query

using generation P

g

as the initial relation and having r

d

as the linear recursive rule

3

can

be processed in the way shown in the example.

3. P

1

; : : : ; P

g

are computed by applying the linear recursive rule, r, g times to the initial

relation E = P

0

.

4. The d-step query involving r

d

as the linear recursive rule and using P

g

as the initial

relation is evaluated by computing T transitive closures as shown in the example above.

The resulting relation

�

P of the d-step query is the union of the generations P

g+id

(for all

i � 0).

5. Finally the (original) linear recursive rule r is applied (d � 1) times to

�

P to get the

generations P

g+id+1

; : : : ; P

g+(i+1)d�1

for i � 0.

6. The resulting relation P of the (original) query is the union of the generations computed

in steps 3., 4. and 5.

5 The Generation Matrix Model

5.1 Generation Matrix

Figure 2 shows the generations P

i

that form the result P of a linear recursive query. The matrix

has d columns and a number of rows depending on the depth of the transitive closure

4

. Thus

the number of rows is a data-dependent parameter whereas d is query-dependent.

Basically computing the result of a linear recursive query means computing the generations of

its underlying generation matrix. We will now show graphically in which way these generations

can be computed: we start in the top left corner as the generation P

0

(square 0) is given by

3

We will refer to this query as the d-step query.

4

i.e. the length of the longest path in the directed graph that is de�ned by the underlying relation.
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the exit rule. Our goal is to proceed to every square (i.e. to compute every generation) in the

matrix. Various operations are allowed that correspond to moves from one square to another:

(R) moving to the next generation to the right (i.e. computing P

i+1

from P

i

) means applying

the linear recursive rule r to P

i

(see �gure 3),

(R2) moving two generations to the right (i.e. computing P

i+2

from P

i

) means applying the

linear recursive rule r twice or applying the 2-step rule, r

2

, once to P

i

(see �gure 4),

(Rd) moving to the generation below (i.e. computing P

i+d

from P

i

) means applying the linear

recursive d-step rule, r

d

, to P

i

(see �gure 5),

(TC) covering, or moving to, all generations of a column means applying the transitive closure

technique using the d-step rule r

d

. This move can only be executed if we have already

reached or passed P

g

(see �gure 6).

Finally we can apply (R), (R2) and (Rd) simultaneously to a group of generations (squares) to

reach their respective neighbours (see �gure 7), i.e. applying a join to several generations, e.g.

P

k+1

[ P

l+1

= (P

k

[ P

l

) 1 Q

A summary of the moves is given in table 1; the costs of the moves are shown in table 2.

0 d−1

g

M

Figure 2: Generation matrix

Obviously we could also generate moves (R3) or (R4) to move three or four generations to

the right by deriving the 3-step rule and the 4-step rule. These (Rx) moves do not appear to be

of any practical use as they `jump' over squares that have to be visited anyway but we should

allow the general possibility of creating and applying such moves. Actually we will only use the

(R) and the (TC) move.
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Figure 3: Moving one square to the right by applying the linear recursive rule r

Figure 4: Moving two squares to the right by applying the 2-step rule r

2
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Figure 5: Moving one square down by applying the d-step rule r

d

Figure 6: Covering the rest of a column by applying the transitive closure technique
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Figure 7: Simultaneous right move

move corresponding operation

(R) P

i+1

= P

i

1 Q

(R2) P

i+2

= P

i

1 Q 1 Q

(Rd) P

i+d

= P

i

1 Q 1 � � � 1 Q

| {z }

Q

d

(TC) Q

+

a

j

for j = 1; : : : ; T

Table 1: Correspondence to operations
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Several strategies/routes of `running through the matrix' can be considered. The strategy

described in section 4 (see steps 3., 4. and 5.) is the following; see also �gure 8:

(a) Starting at square 0 perform right-moves (R) until you reach square g { this corresponds

to step 3.

(b) Move down the column of square g { this corresponds to step 4 or a (TC) move.

(c) Perform (d � 1) right moves (R) from all squares of the respective column of square g

simultaneously to get to the remaining squares. { this corresponds to step 5.

The simple bottom-up strategy is shown in �gure 9.

0 d−1

g

Figure 8: Transitive closure strategy of moving through the generation matrix

5.2 An Example

We will now give an example of how the transitive closure technique works. It will be used to

give an idea of the algorithm proposed by [JAN87] and to avoid going into too many details.

The following query will be used throughout the example:

P (A;B;C;D; Z) = E(A;B;C;D;Z) (4)

P (A;B;C;D; Z) = P (D;A;B;C; Y ) 1 Q(Y; Z) (5)

The substitution graph of this query is very simple; it is shown in �gure 10. There is only one

cycle of length 4 and by applying the lemmas and the theorem of appendix A we get d = 4 and

g = 0.
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0 d−1

g

M

Figure 9: Bottom-up evaluation of a query

1 2 3 4 5

Figure 10: Substitution graph of the linear recursive rule
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The following relations E and Q are used in the example:

E = f(0; 1; 1; 0; 2); (1; 0; 1; 0; 3); (1; 1; 0; 0; 2); (0; 0; 1; 1; 2)g (6)

Q = f(1; 2); (2; 3); (3; 4); : : : ; (15; 16)g (7)

The �rst task is to derive the d-step rule r

d

which is in this case the 4-step rule r

4

. We compute

r

4

by deriving r

2

, r

3

and �nally r

4

:

P (A;B;C;D; Z) = P (D;A;B;C; Y

1

) 1 Q(Y

1

; Z)

P (A;B;C;D; Z) = P (C;D;A;B; Y

2

) 1 Q(Y

2

; Y

1

) 1 Q(Y

1

; Z)

P (A;B;C;D; Z) = P (B;C;D;A; Y

3

) 1 Q(Y

3

; Y

2

) 1 Q(Y

2

; Y

1

) 1 Q(Y

1

; Z)

P (A;B;C;D; Z) = P (A;B;C;D; Y

4

) 1 Q(Y

4

; Y

3

) 1 Q(Y

3

; Y

2

) 1 Q(Y

2

; Y

1

) 1 Q(Y

1

; Z)

The last rule, r

4

, can be reduced by creating a new relation Q

4

:

Q

4

(Y; Z) = Q(Y; Y

3

) 1 Q(Y

3

; Y

2

) 1 Q(Y

2

; Y

1

) 1 Q(Y

1

; Z)

P (A;B;C;D; Z) = P (A;B;C;D; Y ) 1 Q

4

(Y; Z) (8)

The relation Q

4

looks like this:

Q

4

= f(1; 5); (2; 6); (3; 7); : : : ; (12; 16)g (9)

Comparing Q and Q

4

shows why r

4

does in fact 4 steps and comparing the linear recursive

rule r and its derivatives r

2

and r

3

with the 4-step-rule r

4

shows the signi�cant characteristic

of r

4

: the argument patterns of the P-literals are isomorphic

5

whereas the respective patterns

of the P-literals in r, r

2

and r

3

are not. In fact the isomorphism of the P-literals is the main

characteristic of r

4

that allows us to apply the transitive closure technique with P

g

= P

0

= E

as the exit relation.

Finally we have to compute one single transitive closure as Q

4

consists only of a source and

a destination attribute and there is no attribute like X

1

in the example of sections 3 and 4. The

transitive closure Q

4+

of Q

4

is

Q

4+

= f(1; 5); (1; 9); (1; 13); (2; 6); (2; 10); (2; 14); (3; 7); (3; 11); (3; 15);

(4; 8); (4; 12); (4; 16); (5; 9); (5; 10); : : : ; (12; 16)g

Now we have got several rules and relations to process the original query:

� the exit rule (4) of the query and the corresponding exit relation E (6),

� the linear recursive rule r (5) and the corresponding relation Q (7),

� the linear recursive 4-step rule r

4

(8) and the corresponding relation Q

4

(9).

Figure 11 shows the generations P

0

; P

1

; : : : ; P

15

that form as a union the resulting relation

P . We will now show the structure of P by moving from one generation to another using the

rules and relations given or derived:

5

see appendix A for a de�nition of isomorphism.
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� The tuples of the top left square or generation are given by the exit rule (4) so P

0

= E

and the tuples of E are put into the top left square.

� Note that the tuples of a generation P

i+1

can be derived by applying (5) to the tuples of

P

i

, e.g. for i = 0:

P

1

(1; 1; 0; 0; 3) = P

0

(0; 1; 1; 0; 2) 1 Q(2; 3)

P

1

(0; 1; 0; 1; 4) = P

0

(1; 0; 1; 0; 3) 1 Q(3; 4)

: : :

This corresponds to an (R) move.

� Tuples of a generation P

i+d

can be derived by applying (8) to the tuples of P

i

, e.g. for

i = 0:

P

4

(0; 1; 1; 0; 6) = P

0

(0; 1; 1; 0; 2) 1 Q

4

(2; 6)

P

4

(1; 0; 1; 0; 7) = P

0

(1; 0; 1; 0; 3) 1 Q

4

(3; 7)

: : :

This corresponds to an (Rd) move.

� As P

g

= P

0

a (TC) move can be executed right from the beginning, i.e. we can compute

[

k�1

P

i+kd

by applying the TC technique to a generation P

i

, i.e. we can compute the remaining

generations of the column of P

i

by computing Q

4+

{ which we have already done { and

joining the these tuples with those of P

i

. We demonstrate this by using only the tuple

(0; 1; 1; 0; 2) of generation P

0

:

f(0; 1; 1; 0; 2)g 1 Q

4+

= f(0; 1; 1; 0; 2)g 1 f: : : ; (2; 6); (2; 10); (2; 14); : : :g

= f(0; 1; 1; 0; 6); (0; 1; 1; 0; 10); (0; 1; 1; 0; 14)g

These are exactly the tuples appearing in the �rst positions of generations P

4

; P

8

; P

12

(see

�gure 11).

� (R2) or (R3) moves can be performed by applying the rules r

2

and r

3

.

5.3 Parallel Aspects

The generation matrix model of section 5.1 provides a framework for analyzing several strategies

to process a linear recursive query. The moves (R) and (TC) may be combined in several ways

for query evaluation. Considerations of sequential strategies dwell upon whether to apply the

(TC) move or to go rather for an ordinary bottom-up evaluation, i.e. applying (R) moves. This

is a crucial point and we can open the ground for a wide range of new processing strategies by

involving parallelism. Parallel issues in the evaluation process are:

Data parallel moves: Figure 7 gives already an example in which an (R) move can be ap-

plied to several portions of data (e.g. several generations) in parallel. This is called data

parallelism as the same instructions are executed on di�erent items of data. In this case
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Figure 11: The generations in form of a matrix

data parallelism is possible because there are no constraints in between the portions of

data. E.g. generations do not have to be disjoint and can be built independently from

one another. This means that (R) moves { and the same applies to (TC) moves { can be

performed simultaneously on several generations, e.g. as shown by �gure 7.

Di�erent moves in parallel: The (R) and (TC) moves do not interfere with each other so

(R) and (TC) moves can be executed in parallel even on the same portion of data, i.e.

(R) or (TC) can be applied whenever possible and regardless of whether there is already

another activity going on.

Parallelizing the (R) move: Clearly the (R) move can be parallelized internally. As we have

already seen it consists mainly of a join operation

6

. Therefore e�orts should be mainly

concentrated on implementing one or more appropriate

7

parallel join algorithms.

Parallelizing the (TC) move: The same ideas that have applied to the (R) move can be

used for the (TC) move. The dominant operation in this case is clearly the transitive

closure. There are several well investigated parallel transitive closure algorithms based

on boolean matrix multiplications [Akl89], the Warshall constraints [ADJ90] or hash-join

techniques [ZZO93]. Furthermore there are techniques regarding the characteristics of

parallel computers, e.g. [AJ88], [CCH90], [DR94].

6

Projection and selection operations may also be involved but can be neglected regarding the performance

issues that are dominated by the join operation

7

E.g. regarding the underlying machine's architecture.
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6 The Cost Model

Usually a database management system (DBMS) incorporates a query optimizing module that

decides on the best way to process the query. Given the generation matrix model and the

moves and the parallel issues of sections 5.1 and 5.3, a variety of strategies to move through the

generation matrix, i.e. of processing a query, can be considered. Naturally it would be nice to

�nd out a way to determine the optimal, i.e. the fastest or cheapest, strategy in advance.

We can consider a strategy to be a sequence of stages that are consecutively executed. In

the simplest, i.e. sequential, case a stage consists of a single move; in the more complex, parallel

case a stage consists of several moves that are executed in parallel.

The costs of a strategy are the sum of the costs of all its stages and the costs of a stage are

the costs of the most expensive move in a stage. The problem of calculating the strategy costs

is therefore reduced to the problem of identifying the move costs.

Although the dimensions of the matrix and the values of d and g are parameters that

in
uence the performance we may neglect them as they are the same for each of the competing

strategies to process the query so these parameters are not of any use to distinguish between

the strategies. We can therefore concentrate on the costs of the moves.

Table 2 shows that the costs of a move are not constant and depend parameters like T or

on the size of the relations involved in a join operation. Therefore predicting the costs of a

strategy is not straightforward. Basically we can concentrate on the following issues:

1. on the e�ciency of a right-move (R), i.e. essentially the e�ciency of the underlying join

operations as one right-move is in fact executing one join operation, which is dominated

by

(a) the size of the databases relations involved in the join and

(b) the data skew, i.e. whether the data values are distributed uniformly or not

8

2. on the e�ciency of the (TC) move; this is dictated by

(a) the number T of transitive closures

9

for computing the generations of the column in

which square g is located,

(b) the sizes of the underlying graph structures and

(c) the lengths of the longest paths in the graphs.

The sizes of intermediate join relations and the sizes of the underlying graph structures

cannot be predicted easily [LN89]. Therefore we will follow a heuristic approach. The following

section will present the costs for (R) and (TC) moves obtained by experiments on a Connection

Machine CM-200. We give these results to prove the dependency of these costs on the lengths

of the longest paths, on the number T of transitive closures and on data skew and to show in

which way a query optimizer can use these parameters to choose the most appropriate strategy.

8

There is a variety of papers covering the problems data skew causes on parallel joins, e.g. [WD91] [WDY93]

[KO90].

9

Actually T is also a skew parameter as it immediately depends on the number of values appearing in a certain

attribute or set of attributes.
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move costs

(R) 1 join for each move

(R2) 1 join for each move

1 join for building Q 1 Q (once)

(Rd) 1 join for each move

(d� 1) joins for building Q

d

(once)

(TC) T selection operations to build the Q

a

j

's

T transitive closures

Table 2: Costs of the moves

7 Move Costs

We now present the performance results for (R) and (TC) moves. These results were obtained

from several sequences of experiments run on a Connection Machine CM-200. The CM-200 has

an SIMD architecture using 16384 processors. It is an inherently data parallel machine which

allows us to exploit all but the second of the parallel issues mentioned in section 5.3.

The dependency of the move costs on three parameters are shown:

� the length L of the longest path in the underlying graph,

� the number T of values occurring in the attribute(s) that are common to every literal in

a linear recursive rule

10

,

� the data skew amongst the source and destination attributes of the transitive closure(s).

The bottom-up and the transitive closure strategies were implemented using a data parallel

hash join [Min93] [KO90] [KM91] and a simple join algorithm [ZT93]. The hash join spreads

the data over a data-dependent number of processors which makes it sensitive to data skew

e�ects (see sections 7.2 and 7.3) whereas the simple join uses the entire set of processors and

essentially performs parallel selections to get the tuples that qualify for the join and builds the

join result sequentially.

For computing the transitive closure an algorithm was implemented that is based on per-

forming parallel boolean matrix multiplications [Akl89]. This proved to be the most e�cient

[ZT93].

The times given in the experiments are CM elapsed times in seconds and incorporate the

times for interaction with the secondary storage.

7.1 Varying L

The query used in these experiments is the most simple for computing the transitive closure

P (X;Z) of a relation Q(X;Z):

P (X;Z) = Q(X;Z)

P (X;Z) = P (X; Y ) 1 Q(Y; Z)

10

see for example the X

1

attribute in the linear recursive rule (2).
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The underlying graph structure

11

of Q was a number of binary trees each of them having a

depth not larger than L. L was varied over the range of f2; 3; : : : ; 10g. The size of Q was 1000

tuples in each experiment. Thes results for performing one (R) and one (TC) move are shown

in �gures 12 and 13 respectively.

sec

L

2 3 4 5 6 7 8 9 10

0

1

Figure 12: Costs of one (R) move depending on the length L of the longest path; a hash join

algorithm was used.

sec

L

2 3 4 5 6 7 8 9 10

0

5

10

15

20

Figure 13: Costs of a (TC) move depending on the length L of the longest path.

Figure 12 shows that the average costs for an (R) move are cheaper for higher values of L.

This is due to the fact that for low L values the average join result is larger than for high L

11

A relation Q(X;Z) can be considered as the set of edges of the graph, i.e. a tuple (a; b) 2 Q denotes that

there is an edge from node a to node b. The values for attributes X and Z de�ne the set of nodes of the graph.
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values. This is reasonable as small L values force the data to be `denser' i.e. to be connected

by short paths. Therefore a larger number of nodes can be reached by combining two pathes

(i.e. computing a join) that are already known.

The costs of a (TC) move are clearly dominated by the number of matrix multiplications to

be performed. This number is given by dlog

2

Le which causes the `stair e�ect' in �gure 13.

Figure 14 shows the overall performance of the two strategies in the experiments. The

transitive closure performs better than the bottom-up strategy for higher values of L as it

increases logarithmically with a linearly increasing L whereas the bottom-up strategy grows

linearly. In �gure 14 the crossoverpoint of the two graphs is around L = 7. This value depends

also on implementation and hardware speci�c characteristics and should not be considered as a

`natural law' but the existence of such a crossover is the important fact. The corresponding value

of L can be obtained experimentally in the speci�c case. On knowing this value an optimizer

can choose the most e�ective strategy for processing a query.

Transitive Closure Strategy

Bottom-Up Strategy

sec

L

2 3 4 5 7 8 9 10

0

10

20

30

40

Figure 14: Overall performance of the strategies depending on L

7.2 Varying T

In these experiments the query (1), (2) of section 2 was used:

P (X

1

; X

2

; Z) = Q(X

1

; X

2

; Z)

P (X

1

; X

2

; Z) = P (X

1

; X

2

; Y ) 1 Q(X

1

; Y; Z)

The underlying graph structure of Q were a number of simple pathes each one not longer than

10, i.e. L was set to 10 in each experiment. The number T of values of the attribute X

1

in

Q(X

1

; X

2

; Z) was varied over the range of f10; 20; : : : ; 100g; the size of Q was 1000 tuples.

Actually the parameter T characterizes a kind of redistribution skew of the X

1

attribute

[WDJ91] which is relevant for parallel implementations of relational algebra operators. They

20



often use hash functions depending on the data values of a particular attribute to spread the

data over a number of processors. This implies that an increasing number of distinct values

results in the data being distributed over a larger number of processors. This applies for the

hash join algorithm we used in the experiments of �gure 15; additionally the results for the

simple parallel join are given. The latter algorithm is not sensitive to e�ects of redistribution

skew.

Figure 15 shows the costs of a single (R) move using the hash join and the simple join

respectively. The hash join is in
uenced by the redistribution skew and performs worse than

the simple join for small values of T . Both join algorithms su�er from linearly increasing join

results for T being increased but the hash join overcompensates this e�ect by achieving a better

data distribution for large T values.

Figure 16 gives the costs for a (TC) move. The costs rise nearly linearly with increasing

T values. This is due to the fact that T is the number of transitive closures that have to be

computed in each case. The costs of each transitive closure is nearly constant although the

underlying graph is larger for a smaller T . Nevertheless they remain constant in this case due

to speci�c Connection Machine programming characteristics.

Finally �gure 17 shows the overall performance of the transitive closure and the bottom-up

strategies. As in the case of L in section 7.1 the remarkable fact is the existence of a crossover

at T � 43. Again this T value depends on implementation and architectural characteristics and

must be obtained experimentally. But the experiments prove again that it is worth to have an

optimizer to decide on the most e�cient strategy (including a decision on the most appropriate

join algorithm).

Hash Join Simple Join

sec

T

10 20 30 40 50 60 70 80 90 100

0

1

2

Figure 15: Costs of one (R) move depending on the number T of values in the X

1

attribute of

Q(X

1

; X

2

; Z) for a parallel hash join and a simple data parallel join.
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Figure 16: Costs of one (TC) move depending on the number T of values in the X

1

attribute

of Q(X

1

; X

2

; Z).
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Figure 17: Overall performance of the strategies depending on T
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7.3 Varying the Data Skew

The query used in these experiments is the query of section 7.1 was used for computing the

transitive closure of a relation Q(X;Z):

P (X;Z) = Q(X;Z)

P (X;Z) = P (X; Y ) 1 Q(Y; Z)

The underlying graph structure of Q was a number of DAGs (acyclic directed graphs). The size

of Q(X; Y ) was set to 1000 tuples and each of the attributes held 333 distinct values 0,1,: : : ,332

so redistribution skew was �xed. The values of the X and Y attributes were Zipf-distributed

[Knu73] with

x

i

=

c

i

�

to be the probability of value i in the X attribute where

c =

1

H

(�)

333

and H

(�)

333

=

333

X

k=1

1

k

�

So in these experiments the tuple placement skew [WDJ91] was varied rather than the redistri-

bution skew, i.e. we varied over the frequency of the values rather than the number of distinct

values.

The probability y

i

of value i in the Y attribute was set to

y

i

= x

333�i�1

which results in contrary distribution as shown in �gure 18. Having the values distributed in

this way allows to generate a sequence of relations Q synthetically such that

x < y for every (x; y) 2 Q(X; Y )

which guarantees acyclicity. The resulting DAGs had di�erent lengths of their respective longest

paths so the depth of the recursion was �xed to 4 in all experiments to avoid the results being

in
uenced by that parameter.

Figure also shows the e�ect of varying the parameter �: a small � value means less skewed

data and results in an increased overlap of the values which implies larger join results for

Q(X; Y ) 1 Q(Y; Z) { see the diagrams in �gure 18.

Figure 19 presents the costs for an (R) move depending on the skew parameter �. The hash

join bene�ts from low � values as they imply a better distribution amongst the 333 processors

that are involved in the computation. Both join algorithms bene�t from decreasing join results

for an increasing data skew. This is due to the e�ect shown in �gure 18 that the overlap

decreases with in a � increasing.

The result shown in �gure 20 show that the (TC) move is not a�ected by data skew. This

is caused by the fact that the boolean matrix multiplication technique was used for computing

the transitive closure. There are several other parallel transitive closure algorithms which are

based on hash techniques, e.g. [ZZO93], and which are therefore sensitive to skew e�ects.

Figure 21 gives the overall performance results for the strategies and summarizes the issues

that were already discussed. [WDJ91] denotes changing join result sizes as another type of

skew, namely the join product skew. Following this interpretation and stating that every join
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algorithm naturally depends on the size of the join result we can conclude from �gure 21 that the

bottom-up strategy is very sensitive to skew e�ects (either tuple placement or join product skew)

whereas the transitive closure strategy can be implemented such that is nearly

12

una�ected by

data skew.

8 Conclusions

After outlining the problems of linear recursion in section 2 we presented two evaluation tech-

niques in sections 3 and 4 which were integrated in one query processing model in section 5.

The generation matrix model is suitable as an abstract representation for a query optimizer

because it provides a small set of simple operators which can be combined to create several

strategies to process a query.

It also focuses attention computer resource utilization, as linear recursive queries have to be

processed by computing a data-dependent number of transitive closures. This data-dependency

cannot be expressed in relational algebra just by adding a transitive closure operator

13

.

Thus a query optimization module in a database system that executes recursive queries on

a parallel computer would operate in a way that is similar to a conventional query optimizer.

A utility program would collect statistical information about the current state of the data.

Certain properties, such as data skew, might be expected to change relatively slowly so the

measurement of skew would hold good for some period of time. Various parameters for heuristics

would be properties of the target parallel computer, and such parameters must be computed

by experimentation.

In section 7 performance results were given for an implementation of the processing model

on a data parallel architecture. The results prove that it is worth considering parameters like

the lengths of the longest paths, the number of transitive closures and data skew for choosing

the appropriate strategy for processing a particular query. Information about these parameters

can be stored in the database catalog and are available before a query is processed.

12

Naturally transforming the boolean matrix into the �nal result { a database relation { is also in
uenced by

the number of resulting tuples that have to be generated. Figure 21 proves that this e�ect is not signi�cant.

13

By contrast we remind the reader that { in theory { every linear recursion can be replaced by computing the

transitive closure of one, possibly very large graph [Ull89] [JAN87]. This can be expressed in a relational algebra

enhanced by a transitive closure operator.
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frequency in X frequency in Y

Figure 18: Zipf distribution of the values in the relations Q(X; Y ) that were used in the exper-

iments. Each pair of columns shows the frequency of a particular value in the X and the Y

attribute respectively. The upper diagram shows a distribution for a high � value the lower for

a small �.
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Figure 19: Costs of one (R) move depending on the skew parameter � for the parallel hash join

and a simple data parallel join.

sec

0--

0.5 0.6 0.7 0.8 0.9

2.5

2.6

2.7

2.8

2.9

3.0

Figure 20: Costs of a (TC) move depending on the skew parameter �.
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Transitive Closure Strategy

Bottom-Up Strategy (Hash Join)

Bottom-Up Strategy (Simple Join)

sec

0--

0.5 0.6 0.7 0.8 0.9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Figure 21: Overall performance of the strategies depending on �
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A Deriving Parameters d and g

In this section we will present the essential tools to derive the parameters d and g from a linear

recursive rule. The lemmas and the theorem produces more precise values than given in [JAN87]

which concentrates on the properties of d and g rather than the exact values.

De�nition 1 (Substitution Graph): A substitution graph for a linear recursive rule

p(X

1

; : : : ; X

n

) : � p(Y

1

; : : : ; Y

n

); q(: : :):

where all X

i

; Y

i

are variables or constants, is de�ned thus:

1. There is a vertex for each argument position i (1 � i � n).

2. There is a directed edge from vertex i to vertex j if Y

j

= X

i

, i.e. a variable or constant

(say W ) is in the head of the rule at position i (i.e. X

i

= W ) and occurs in position

j of the recursive literal in the body of the rule (i.e. Y

j

= W ).

It is possible that some vertices are not connected to any edges. This implies that either the

consequent holds a variable at this position that is not used by the antecedent of the rule (so

no edge is leaving this vertex). or there is no predecessor for the vertex because the antecedent

contains a new argument at this position. A substitution graph is a special kind of graph as it

consists only of disconnected components each of which is a cycle, a tree or a cycle with one or

more trees `hanging o�' the vertices of the cycle. This is because a vertex of the graph has at

most one predecessor. Actually it represents a substitution.

De�nition 2 (Substitution): A substitution S is a mapping of an argument vector X =

(X

1

; : : : ; X

n

) to an argument vector Y = (Y

1

; : : : ; Y

n

); more brie
y Y = S(X) where Y

denotes the argument vector of the antecedent and X that of the consequent of a linear

recursive rule. S

k

(X) denotes k successive applications of S to X :

S

k

(X) = S(S(: : :S

| {z }

k

(X) : : :))

Note that the X

i

and Y

i

are arguments, i.e. variables or constants. If Y contains a variable Y

i

that does not appear in X and a substitution S is de�ned by Y = S(X) then this means that

in every application of S to an arbitrary argument vector X

0

the result Y

0

= S(X

0

) will hold a

new variable on the position that corresponds to that of Y

i

in Y . For example if X = (A;B)

and Y = (B;C) and S(X) = Y then

S((G;H)) = (H; I)

where I is a new variable.

In the following proofs we will label the vertices of the substitution graphs with the respective

argument of the linear recursive rule. Applying a substitution once means that each label in its

corresponding substitution graph are shifted along the edges that leave its actual vertex.

De�nition 3 (Isomorphism): Two argument vectors X = (x

1

; : : : ; x

m

) and Y = (y

1

; : : : ; y

m

)

are isomorphic if
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� x

i

= x

j

, y

i

= y

j

and

� x

i

= y

i

or x

i

does not appear in Y (and vice versa) and

� any non-common arguments are variables

Lemma 1 Let G be the substitution graph corresponding to a substitution S of a linear recursive

rule

p(X) : � p(Y ); : : :

where X and Y are argument vectors and S(X) = Y . If G consists only of a cycle with possibly

some trees hanging from this cycle and

d = length of the cycle of G

g = maximum depth of all trees

attached to the cycle of G

then the following holds:

S

k

(X) and S

k+jd

(X) are isomorphic for k � g and j � 0.

Proof

1. Trivially each vertex of the cycle holds the same label every d-th iteration of the mapping.

2. As the roots of all trees are involved in this cycle all trees are fed by labels of the cycle

vertices.

3. Consequently G only holds labels that originated in the cycle vertices after g generations;

all original labels of the tree vertices are pushed out. So S

k

(X) and S

l

(X) hold only

common variables for k; l � g.

4. Repetition of labels is only possible in the tree vertices

14

. The pattern of repetition of

labels is established after g iterations because the tree-root-labels have reached or passed

all the leaves. This is only of importance if there is at least one tree involved. If there is

no tree (i.e. g = 0) then there is no repetition of variables. So S

k

(X) and S

l

(X) hold the

same pattern of repetition for k; l � g.

The conclusion of 1., 2., 3. and 4. is that S

k

(X) and S

k+jd

(X) are identical for k � g and

j � 0 so the statement of the lemma holds. 2

Lemma 2 Let G be the substitution graph of a substitution S of a linear recursive rule

p(X) : � p(Y ); : : :

where X and Y are argument vectors and S(X) = Y . If G consists of only a tree and

d = depth of the tree + 1

g = depth of the tree

then the following holds:

S

k

(X) and S

k+j

(X) are isomorphic for k � g and j � d.

14

These are the only vertices that have more than one successor. Repetition of labels in the cycles is no problem

as the pattern of repetition is already established from the beginning.
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Proof

1. After g iterations the pattern of repetition is established because the root label has reached

or passed all the leaves so S

k

(X) and S

l

(X) hold the same pattern of repetition for k; l � g.

2. After d iterations all original labels are shifted out so S

k

(X) and S

k+j

(X) have no common

variable names for k � 0 and j � d.

The conclusion of 1. and 2. is the statement of the lemma. 2

Theorem 1 Let G be a substitution graph (corresponding to a substitution S) consisting of two

disjoint subgraphs G

1

and G

2

with the parameters d

1

; g

1

; d

2

; g

2

and the corresponding substitu-

tions S

1

; S

2

respectively. Let X = (X

1

; X

2

) and Y = (Y

1

; Y

2

) be argument vectors and X

i

; Y

i

be

the parts of X and Y that represent the argument positions of G

i

(i 2 f1; 2g).

a.) If G

1

contains a cycle and G

2

does not then let

d = the least multiple of d

1

that is larger than d

2

b.) If G

1

does not contain a cycle and G

2

does then let

d = the least multiple of d

2

that is larger than d

1

c.) If G

1

and G

2

both contain cycles then let

d = the least common multiple of d

1

and d

2

d.) If G

1

and G

2

are both acyclic then let

d = max(d

1

; d

2

)

and let g = max(g

1

; g

2

) , then the following holds

S

k

(X) and S

k+jd

(X) are isomorphic for k � g and j � 0.

Proof

� We note that S

k

(X) for k � 0 can be derived by

S

k

(X) = S

k

((X

1

; X

2

))

= S

k�1

(S((X

1

; X

2

)))

= S

k�1

((S

1

(X

1

); S

2

(X

2

)))

= � � �

= (S

k

1

(X

1

); S

k

2

(X

2

))

so

S

k+jd

(X) = (S

k+jd

1

(X

1

); S

k+jd

2

(X

2

))

� Without losing generality G

2

is assumed to consist of only one connected component.

� The proof will be an induction over c where

c = number of connected components

in G
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Base Case: c = 2, i.e. G

1

consists of one connected component.

a.) G

1

contains a cycle, G

2

is a tree:

By lemma 1 S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because

d is a multiple of d

1

.

By lemma 2 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d � d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.

b.) G

1

is a tree, G

2

contains a cycle:

This case is similar to a.) { the roles of G

1

and G

2

are just swapped.

c.) G

1

contains a cycle, G

2

contains a cycle:

By lemma 1 S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because

d is a multiple of d

1

.

By lemma 1 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d is a multiple of d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.

d.) G

1

is a tree, G

2

is a tree:

By lemma 2 S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because

d � d

1

.

By lemma 2 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d � d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.

Assumption: The theorem holds for all G with c � c

0

. (�)

Inductive Step: c = c

0

+ 1,

i.e. G

1

has c

0

connected components

) because of (�) the theorem holds for G

1

(��)

a.) G

1

contains a cycle, G

2

is a tree:

S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because of (��) and the fact that d is a multiple of d

1

.

By lemma 2 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d � d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.
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b.) G

1

consists of trees, G

2

contains a cycle:

This case is similar to a.)

c.) G

1

contains a cycle, G

2

contains a cycle:

S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because of (��) and the fact that d is a multiple of d

1

.

By lemma 1 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d is a multiple of d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.

d.) G

1

is a tree, G

2

is a tree:

S

k

1

(X

1

) and S

k+jd

1

(X

1

) are isomorphic for k � max(g

1

; g

2

) � g

1

because of (��) and the fact that d � d

1

.

By lemma 2 S

k

2

(X

2

) and S

k+jd

2

(X

2

) are isomorphic for k � max(g

1

; g

2

) � g

2

because

d � d

2

.

So the respective concatenations

(S

k

1

(X

1

); S

k

2

(X

2

)) = S

k

(X) and

(S

k+jd

1

(X

1

); S

k+jd

2

(X

2

)) = S

k+jd

(X)

are isomorphic.

Therefore the statement of the theorem holds. 2
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