
On the Scope of Applicability of the ETF

Algorithm

Cristina Boeres, George Chochia, and Peter Thanisch

Department of Computer Science

The University of Edinburgh

King's Buildings, Edinburgh EH9 3JZ

Scotland

email: fcbx,gac,ptg@dcs.ed.ac.uk

Abstract

Super�cially, the Earliest Task First (ETF) heuristic [1] is attractive

because it models heterogeneous messages passing through a heterogeneous

network. On closer inspection, however, this is precisely the set of circum-

stances that can cause ETF to produce seriously sub-optimal schedules.

In this paper we analyze the scope of applicability of ETF. We show that

ETF has a good performance if messages are short and the links are fast

and a poor performance otherwise. For the �rst application we choose the

Diamond DAG with unit execution time for each task and the multipro-

cessor system in the form of the fully connected network. We show that

ETF partitions the DAG into lines each of which is scheduled on the same

processor. The analysis reveals that if the communication times between

pairs of adjacent tasks in a precedence relation are all less than or equal to

unit then the schedule is optimal. If the communication time is equal to

the processing time needed to evaluate a row then the completion time is

O(

p

n) times more than the optimal one for an n � n Diamond DAG. For

the second application, we choose the join DAG evaluated by two connected

processors.

1

1 Introduction

The problem of scheduling an application onto a set of processors, taking into

account communication delays, has been widely studied and is known to be NP-

hard except for special cases [11]. One of the forms is the problem of �nding

an e�cient static schedule of a set of partially ordered tasks on a multiprocessor

system. Many scheduling heuristics have been proposed to solve this problem,

and based on the technique employed, the heuristics may be classi�ed in di�erent

groups [7]. Heuristics that manipulate the paths between the source node and

sink node of the graph are classi�ed as critical path heuristics. Another group

of heuristics are the ones which give priorities to the tasks, depending on the

precedence order and the weights associated to tasks and edges. These algorithms

are classi�ed as list scheduling heuristics.

In an attempt to include the information about di�erent topologies of real

multiprocessors, Hwang et al. [1] proposed the Earliest Task First (ETF), which is

a simple greedy strategy, classi�ed as a list scheduling heuristic [2]. ETF schedules

a free task to an available processor, in which it can start as early as possible; a

task is `free' when all its immediate predecessors have already been scheduled. It

is emphasised that ETF tries to hide communication with computation, leading

to the establishment of its performance guarantee.

In [1], an extensive analysis of ETF is done and the makespans of schedules

determined by ETF are shown. However, we wish to focus on problems that arise

with ETF when certain relationships hold between the parameters that represent

the application and the architecture.

In [12], the performance of ETF is compared with the Dominant Sequence

Clustering (DSC) algorithm. The number of processors given to ETF is the same

as the number of clusters determined by DSC algorithm. Similarities and di�er-

ences between the two algorithms are described in [12] which examines the ETF

property of considering the distance in choosing the best processor to allocate to

tasks. Gerasoulis et al. point out that ETF gives poor results when scheduling a

join Dag. In such a case, if the communication cost is su�ciently greater then the

computation cost, it is better to execute the tasks in the same processor. However,

as ETF schedules the tasks at the earliest time possible, it does not allocates tasks

at the same processor even if the communication cost is high.

In [4] an analysis and classi�cation of non-greedy heuristics and greedy heur-

istics is done. ETF is classi�ed as a greedy heuristic and an extensive set of

experiments shows that the DFBN non-greedy heuristic proposed in [3] has a

smaller time complexity than greedy algorithms like ETF. However, both ETF

and DFBN give bad schedules when considering a join Dag as described by Gera-

soulis et al. [12].

The paper is organized as follows: in Section (2) we give a description of the

ETF algorithm. Section (3) contains applications of ETF to the Diamond DAG

and the join DAG; we show that the time complexity of ETF can be more than a

constant factor times worse than the optimal one. In section (4) we analyze the

2

scope of applicability of ETF and suggest a three stage heuristic which hopefully

may improve the situation.

2 The ETF Algorithm

The ETF algorithm was developed for scheduling tasks on multiprocessor systems

with an arbitrary topology. The interesting feature of the algorithm is that it

makes a scheduling decision based on the delay associated with message transfer

between any pair of nodes in the network and the amount of data to be transferred

between a pair of tasks t; t

0

such that t is an immediate predecessor of t

0

.

Given a set of tasks T = ft

i

j i = 1; :::;mg with precedence relation <, i.e.

where t; t

0

2 T , t < t

0

means that the evaluation of t

0

cannot be initiated until

the evaluation of the t is complete. G

T

= (T;<) is the directed acyclic graph.

The function �(t): T ! Z

+

0

speci�es the evaluation time of the task t 2 T .

Function �(t; t

0

): T � T ! Z

+

0

is associated with the amount of data to be

transferred between t and t

0

. The multiprocessor system is a set of identical

processors P = fp

i

j i = 1; :::; ng. For each pair p; p

0

2 P the function � (p; p

0

):

P � P ! Z

+

0

speci�es the delay associated with passing of a message of unit size

from processor p to p

0

. The following bound, !

ETF

, on the makespan, i.e. time to

complete the evaluation of any G

T

, is proved

!

ETF

�

�

2�

1

n

�

!

opt

+ C; (1)

where !

opt

is the optimal completion time attainable when communication is ig-

nored and

C = max

chains

(�

max

l�1

X

i=1

�(t

c

i

; t

c

i+1

));

where (t

c

1

; :::; t

c

l

) is a chain of l tasks from G

T

, and �

max

= max

p;p

0

2P

� (p; p

0

). The

maximum is taken over the set of all source to sink chains.

In order to formulate the algorithm it is necessary to introduce the variable

current moment (CM), representing the current moment of the event clock, a set

of available tasks, A, which can be scheduled at time CM , and a set I of idle

processors at time CM . Let D

t

and S

t

denote, respectively, the sets of immedi-

ate predecessors and successors of task t. Let s(t) and f(t) denote, respectively,

the times when the evaluation of task t begins and �nishes. If all immediate

predecessors of t are scheduled then function r(t; p)

r(t; p) =

(

0 if D

t

= ;

max

t

0

2D

t

(f(t

0

) + �(t

0

; t)� (p(t

0

); p))

:

evaluates the time when the last message from the predecessor task arrives in p,

i.e. the earliest time at which t may be scheduled on p. The function next(CM)

returns the earliest time after CM at which a processor �nishes computing a task.

The ETF algorithm is given in Figure 1.

3

Initialization: I=fp

1

; :::; p

k

g, A=ft j D

t

= ;g, q= 0;

CM=0, NM = 1, r(t; p) = 0; 8 t 2 A; 8 p 2 I; f(t) =1; 8 t 2 T ;

0 while q < j T j do

1 while I 6= ; AND A 6= ; do

2

^

t; p̂ : r(

^

t; p̂) = min

t2A

min

p2I

r(t; p);

3 e

s

= max(CM; r(

^

t; p̂));

4 if e

s

� NM then

5 p(

^

t) = p̂; s(

^

t) = e

s

; f(

^

t) = s(

^

t) + �(

^

t);

6 A = A �

^

t; I = I � p̂; q = q + 1;

7 if f(

^

t) � NM then NM = f(

^

t) endif

8 else goto 11

9 endif

10 endwhile

11 CM = NM ;T

new

= ft j f(t) = CM; t 2 Tg;NM = next(CM);A

0

= ;;

12 for t 2 T

new

do

13 I = I [p(t);

14 for t

0

2 S

t

do

15 D

t

0

= D

t

0

� 1;

16 if jD

t

0

j � 0 then A

0

= A

0

[t

0

endif

17 endfor

18 endfor

19 A = A [A

0

;

20 for t

0

2 A do

21 for p 2 I do

22 r(t

0

; p) = max

t2 D

t

0

(f(t) + �(t; t

0

) � (p(t); p))

23 endfor

24 endfor

25 endwhile

Figure 1: The ETF algorithm

4

3 Applications of ETF

In this section we consider two applications of ETF. Let G

T

= (T;<) be the

diamond DAG with n

2

nodes [8]. The nodes and the edges of the graph can be

associated with that of the of n � n rectangular grid. The nodes are at the grid

intersection points and the edges connect nodes at neighbouring intersections. The

edges have the orientation from the node with smaller cartesian coordinate to that

with larger one. The Diamond DAG with n = 6 is show in Figure 2. The tasks

from T can be identi�ed as t

i;j

; i; j = 0; :::; n� 1, where the �rst index is used for

the row number, and the second for column number. Choose the multiprocessor

Figure 2: The Diamond DAG

system to be a completely connected network of k � n processors. Set � (p; p

0

) = 1

for all p; p

0

2 P and �(t; t

0

) = � for all t; t

0

2 T such that t < t

0

.

Theorem 1 ETF schedules all the tasks in any given row on the same processor

so that the task t

i;j

is scheduled in time i�(1+�)+j. Also, at most

l

n

1+�

m

processors

may be involved in the computation simultaneously.

Proof. Apply the induction. At time 0, the set A has one member t

00

which has

no predecessors. The set I consists of all processors in the network. Pick any of

them (line 2). The condition in line 4 is true, hence t

00

will be scheduled on this

processor (line 5). The task will be removed from A (line 6) and will never become

a member of A in the future. Indeed, the only new members of A are successors

of t

00

(lines from 11 to 19). Hence the theorem holds for time 0. Suppose it holds

until time u. The set of tasks which were scheduled in time u satisfy the equation

u = i � (1 + �) + j which has at most one solution for each row i. According to

the induction hypothesis these are the only tasks which are evaluated. At time

u + 1, which is next(u), all these processors �nish the evaluation of their tasks,

thus they will be placed into I again (line 13). Consider any i = (u� j)=(1 + �)

for some j = 0; :::; n� 2, such that t

i;j

is not the last task in that row. Then the

task t

i;j+1

will be placed in the set A of available tasks at time u + 1. This task

can be scheduled at u + 1 on the same processor p as t

i;j

or at u + 1 + � on any

other available processor. Thus function r(t

i;j+1

; p) is minimal for p, hence this

processor will be selected (line 2). Let t

i;j

be the task with maximal i satis�ng

u = i � (1 + �) + j at time u. Then if u+ 1 = (i+ 1) � (1 + �) the task t

i+1j

will be

available at time u+ 1 and it will be scheduled on some (and only one) available

5

processor from I. Therefore we have shown that all the tasks in the same row

are evaluated by the same processor as the previous task in the row. If t

i;j

is the

last task in the row, i.e. j = n � 1 the processor is returned to I i.e. is available

again. Hence there could be at most

l

n

1+�

m

processors involved in the computation

simultaneously.

The theorem establishes that the ETF partitions the diamond DAG into lines.

It was shown in [6] that for this partitioning, the makespan !

l

is

!

l

=

n

2

k

+ (k � 1)(1 + �) (2)

where k is the number of processors. Formally the minimum of (2) is attainable

when k =

n

p

1+�

. However it cannot be reached because of the restriction k �

n

1+�

established above. As !

l

is a decreasing function of k before the formal minimum,

the attainable minimum corresponds to maximal k, i.e. k =

n

1+�

, in which case we

obtain

!

l

= n+ (n� 1) � (1 + �) : (3)

Below we prove that (3) is the minimal possible makespan if 0 � � � 1. Indeed

if � is within this region the task t

i+1;i+1

cannot be evaluated earlier than 1 + �

with respect to t

i;i

for all i = 0; :::; n � 2. Thus the minimal makespan is given

by (n� 1) � (1 + �) plus the time required to evaluate n tasks t

i;i

; i = 0; :::; n� 1

i.e. (3). This is the region where ETF �nds the optimal schedule. However this is

not the case if � is large. If � = n � 1, then k = 1, which means that the DAG

will be evaluated by single processor in time n

2

.

Consider the partitioning of the DAG into stripes [8] of size

p

n. All stripes

mapped on di�erent processors. The �rst processor starts evaluating the �rst

p

n

tasks in the direction towards the boundary, then communicates with its neighbor

proceeding at the same time to the next group of

p

n tasks, and so on. It is easy

to see that the makespan in that case is 2n

p

n. Thus the time complexity of the

evaluation is O(

p

n) times worse than the optimal one.

For the second application we choose the join DAG, i.e. two level binary tree

where tasks t

1

; t

2

have common successor t

3

. In [12] it is stated that ETF has a poor

performance for this kind of DAG. Let the multiprocessor system consists of two

connected processors p

1

and p

2

. Set �(t

1

; t

3

) = �(t

2

; t

3

) = 1, �(t

i

) = 1; i = 1; 2; 3

and � (p

1

; p

2

) = � . It is easy to check that both t

1

and t

2

will be scheduled on p

1

and p

2

at time 0. The task t

3

became available at time 1+ � and can be scheduled

either on p

1

or on p

2

. Hence the makespan is 2+� . If 0 � � � 1 then the makespan

is optimal, however if � � 1 it is much worse than optimal (equal to 3). In the

limiting case � !1, the ETF makespan is in�nitely larger than the optimal one.

4 Conclusion and Work in Progress

The results obtained in the previous section are in agreement with the bound

stated in [1] for unit execution time (UET) and unit communication time assump-

6

tions (UCT), namely

!

ETF

�

�

3�

1

n

�

� !

opt

� 1 :

Choose the unit to be U = min

t2T

�(t). Then the UCT assumption implies

that where the tasks t and t

0

are scheduled on processors p and p

0

, respectively,

max

t;t

0

2T

�(t; t

0

) � � (p; p

0

), is of order U . This assumption does not hold in practice

if the tasks are the CPU operations like additions and/or multiplication, etc. and

the communication between the nodes is organized by means of a message passing

interface (MPI). The MPI usually has a large start-up overhead, i.e. the time

to initiate the data transfer; this can be of order 10 to 1000 times U depending

on the computer and the interface. To model this situation we have to assume

that either messages are long or the link is slow. As was demonstrated by the

examples above, however, this may result in the ine�cient schedules. To improve

the situation the DAG must be reorganized in a new one where each node is a

cluster of tasks. For the new DAG, the UET, and UCT assumptions must hold.

Another problem with the ETF heuristic is that a pair of functions �(t; t

0

)

and � (p; p

0

) is not su�cient to specify the communication overhead precisely, i.e.

there is no parameter associated with the start up overhead �, which in many

cases [5] is dominant over the product �(t; t

0

) � � (p; p

0

). The start up overhead is

the processor activity and hence the processor is busy during this time interval.

In case of ETF the communication is allowed to be completely overlapped with

computations. In other words ETF simulates the nonblocking message passing

with zero startup overhead, whereas real message passing is a mixture of a blocking

communication for the period of time � and a nonblocking communication for the

period of �(t; t

0

) � � (p; p

0

). In order to overcome this problem we suggest the

following three step heuristic. The �rst two steps are used to produce a new

DAG. Each node of the new DAG is a cluster of tasks from T such that a sum of

their execution time is approximately equal to �. In �rst step Papadimitriou and

Yannakakis's heuristic [9] is applied to the original DAG. At this step the number

of processors is unspeci�ed. As the second step, we apply the heuristic suggested

by Thurimella and Yesha [10]. The number of processors at this step is chosen to

be equal to that in the target multiprocessor system. The output is a new DAG

with the properties speci�ed above. In the last step we apply the ETF heuristic.

The analysis of the schedules is a subject of the work in progress.

References

[1] J-J. Hwang, Y-C. Chow, F.D. Anger, and C-Y. Lee. Scheduling precedence

graphs in systems with interprocessor communication times. SIAM J. Com-

put., 18(2):244{257, 1989.

[2] A.A. Khan, C.L. McCreary, and M.S. Jones A comparison of multiprocessor

scheduling heuristics. Technical Report comparison-ICPP-94, Dept. of Com-

7

puter Science and Engineering, Auburn University, 1994. Published in the

Proceeding of the 8th Int. Parallel Processing Sym. - April, 1994.

[3] S. Manoharan and P. Thanisch. Assigning dependency graphs onto processor

networks. Parallel Computing, 17(1):63{73, 1991.

[4] S. Manoharan and N.P. Topham. An assessment of assignment schemes for

dependency graphs. Parallel Computing, 21(1):85{107, 1995.

[5] M.G. Norman, G. Chochia, P. Thanisch, and E. Issman. Predicting the

performance of the diamond dag computation. Technical Report EPCC-TR-

92-07, Edinburgh Parallel Computing Centre, 1992.

[6] M. Norman, P. Thanisch, and G. Chang. Partitioning DAG Computations.

In W. Joosen and E. Milgrom, editors, Parallel Computing: From Theory to

Sound Practice, pages 360{364, Amsterdam, 1992. IOS Press.

[7] M.G. Norman and P. Thanisch. Models of machines and computations for

mapping in multicomputers. Computing Surveys, 25(3):263{302, 1993.

[8] C.H. Papadimitriou and J.D. Ullman. A communication-time tradeo�. SIAM

J. Comput., 16(4):639{646, 1987.

[9] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-

independent analysis of parallel algorithms. SIAM J. Comput., 19:322{328,

1990.

[10] R. Thurimella and Y. Yesha. A scheduling principle for precedence graphs

with communication delay. J. of Computer and Software Engineering,

2(2):165{176, 1994.

[11] B. Veltman, B.J. Lageweg, and J.K. Lenstra. Multiprocessor scheduling with

communication delays. Parallel Computing, 16(2-3):173{182, 1990.

[12] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded

number of processors. IEEE Trans. Paral. Distr. Systems, 5(9):951{967, Sep

1994.

8

