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Abstract

This paper presents lower bounds on the expected time for random des-

tination routing on a mesh, valid for any routing scheme, queueing discipline

and queue size. We show that the lower bounds are applicable to probabil-

istic simulation of the P processor EREW PRAM with shared memory M

on a P processor mesh with distributed memoryM = M, M = P

�

; � > 1,

and consider two cases: where the number of packets q per processor is one,

which corresponds to PRAM simulation with P = P , and where q � 1,

which corresponds to PRAM simulation with parallel slackness. Experi-

mental results are given showing that the bounds give good analytical pre-

dictions of the actual performance of both random destination routing and

practical probabilistic PRAM simulation on meshes. The experiments are

carried out on a mesh with small �xed queues and memory randomized by

pseudo-random hash functions. Simulating PRAM memory accesses with

random strides show that �(lnP= ln lnP)-universal hash functions perform

better than linear, 2-universal hash functions.

�
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1 Introduction

The Parallel Random Access Model (PRAM) provides an ideal platform for the

design and analysis of parallel algorithms, as demonstrated by the large body

of results on it which has accumulated over the past �fteen years. This model

consist of P processors and M shared memory locations, where the processors

operate synchronously, and in every parallel step each processor may store/fetch

a data element to/from any one memory location. The EREW (Exclusive Read

Exclusive Write) PRAM allows at most one processor to access any single shared

memory location in one step, while concurrent access variants allow simultaneous

reads (CREW) and writes (CRCW) to memory locations.

However, actually implementing a PRAM with a signi�cant number of pro-

cessors is infeasible due to the P-way fan-in requirement to each memory location.

To overcome this, a number of techniques, both deterministic and randomized,

for simulating PRAMs on distributed memory architectures have been proposed

(see [6] for a survey). Randomized techniques appear to be the most realistic,

and involve the mapping of the logical shared memory to the physical distributed

memory by means of a pseudo-random hash function such that for (almost) all

parallel access patterns the memory references are distributed evenly among the

modules comprising the physical memory. Ranade's simulation of a PRAM on a

butter
y network [10] is probably the best known example of this technique.

Provably e�cient probabilistic simulations of PRAMs on meshes are considered

in [8, 10, 11]. In these simulations the logical to physical memory mapping is

randomized by means of �(

lnM

ln lnM

)-universal [9] hash functions. The known fast

injective �(

lnM

ln lnM

)-universal hash functions require space O(M), where the con-

stant factor is more than 3. To minimize memory required for simulation it is

desirable to have a bijective mapping. For example, 2-universal hash functions

h(x) = (a � x + b) mod M; a 2 [1; :::;M� 1]; b = [0; ::;M� 1], x 2 [0 : M� 1] are

bijective if a is relatively prime to M.

We consider probabilistic simulation of a P processor EREW PRAM with

shared memory M on a P processor mesh with distributed memoryM = M. We

assume that each communication step of the mesh takes unit time. The physical

memory is organized in P memory banks of sizeM=P each. Each bank is capable

of serving at most one request at a time. Functions of the form h

lin

: M ! P,

h

lin

(x) = h(x) (mod P) will be called linear hash functions and specify the memory

bank to which the address a 2 [0:::M� 1] is mapped. Memory bank congestion is

the number of requests mapped to the same bank for some PRAM simulation step.
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Note that linear hash functions are not bijective and so as many as P addresses

can go to some memory bank in the worst case. However if instead of h(x) we pick

up (at random) a �(

lnM

ln lnM

)-universal hash function the probability of observing

this situation will be su�ciently small [9] to allow simulations of large numbers of

EREW PRAM steps with at most O(

lnP

ln lnP

) maximal congestion in some memory

module.

Dietzfelbing [4] proved that linear hash functions may be not reliable i.e. given

a subset S � [0:::M � 1]; jSj � P of pairwise distinct elements, and randomly

chosen a and b in the linear hash function, the probability to observe congestion

� u is 
(u

�2

). If we repeat this, picking up random sets �(u

2

) times, then the

probability of observing congestion u will be �(1) for some case. However, the

performance of simulations with linear hash functions has been observed to be

basically the same as with �(

lnM

ln lnM

)-universal hash functions in at least three

di�erent experimental studies:

� Ranade [10]: PRAM algorithms for radix and bitonic sorting, matrix multi-

plication, and FFT.

� Englemann and Keller [5]: linear array with random patterns and with

strides 1, 13, 32; and PRAM algorithms for list ranking, matrix multiplica-

tion, and connected components.

� Chochia, Cole and Heywood [2]: linear hash functions were tested on the

linear array reference problem on a randomly partitioned mesh.

In this paper we show that expected time for random destination routing is a lower

bound on the expected time for probabilistic simulation of an EREW PRAM step

when M =M, and M = P

�

; � > 1, P ! 1. We compare lower bounds obtained

for random destination routing with experiments on simulation of the EREW

PRAM on a mesh. In our experiments we use a model of a mesh with small (size

one) �rst in �rst out (FIFO) input and output queues.

Leighton [7], showed that the greedy algorithm for random destination routing

has a maximal number of packets queued at any edge which is at most 4 with

probability 1�O(

log

4

P

p

P

), where P is the number of processors in a 2D mesh. The

probability that any particular packet is delayed � steps while on its shortest path

to its destination is at most O(e

��=6

). Note that Leighton's analysis used furthest

�rst queuing discipline and did not use small, �xed queues.

The paper is organized as follows. In the �rst section we establish the lower

bound on the expected time for random destination routing on a mesh, where
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each processor generates at most one request. The proof is based on consideration

of the wide channel model where multiple packets are allowed to cross a link

simultaneously. In the second section we experiment with a more realistic model

where only one packet may cross a link at a time in one direction. The two

case studies presented are the random destination routing and EREW PRAM

simulation on random arithmetic progression (RAP). (N.B. This memory access

pattern is common for a broad class of algorithms manipulating vectors). In the

latter case memory was randomized with linear and 10-universal hash functions.

We show that lower bound found in the wide channel model is close to the observed

time to simulate PRAM step in the realistic model. The experimental study

revealed a signi�cant deviation between worst case performances of linear and

10-universal hash functions for RAP.

In the third part of the paper, we turn to �nding the lower bound on expected

time to simulate a step of an EREW PRAM with P > P, also known as simulation

with parallel slackness. It is shown in [11] that this simulation results in latency

hiding. As was observed in [1] full latency hiding is possible on a hypercube but

not on a mesh where it improves the performance by at most a constant factor. We

derive the lower bound

P�q

2 b

on the expected time for random destination routing

in a network of P processors of bisection width b where each processor generates

q requests to random destinations. This gives us the lower bound on the expected

length of a superstep in probabilistic simulation of a qP processor EREW PRAM

on a P processor network with bisection b, when M = M, M = P

�

; � > 1,

P !1.

2 RandomDestination Routing in theWide Channel Model

Random destination routing has two phases: (A) each processor sends a packet

to some other node (random destination) with equal probability, and (B) each

processor receives back an acknowledgement. Let �

i;j

; i; j = 0; :::; n � 1 be the

distance, due to the number of links a packet issued by processor (i; j) has to

traverse, to the destination and back, and t

i;j

be the time when that processor

receives back an acknowledgement. In the wide channel model t

i;j

= �

i;j

. In

general given a model of a mesh where at most one packet is allowed to cross a

link (in any direction) at a time t

i;j

� �

i;j

. Let D = max

i;j

�

i;j

denote the longest

distance and T = max

i;j

t

i;j

the completion time for some routing instance.
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Theorem 1 In the wide channel model of a P-processor square mesh for any

routing scheme, the expected time T

A

to complete phase A, E(T

A

) is

� 2 �

p

P � 2 �

n�1

X

k=1

k�1

Y

s=0

 

1�

(k � s) � (k � s+ 1)

2 � P

!

4�(s+1)

�

p

P � e

�O(P)

(1)

Proof: Let p

i;j

(l) be the probability that processor (i; j) generates a request to the

node at distance � l. In the wide channel model each packet is advanced towards

its destination in every step. Therefore E(T

A

) = E(D=2), and the probability

Pr(D=2 � l) =

n�1

Y

i;j=0

p

i;j

(l) :(2)

The expected time to complete phase A is

E(D=2) =

2�n�2

X

l=1

l � (Pr(D=2 � l)� Pr(D=2 � l� 1))

= 2 � n� 2�

2�n�3

X

l=0

Pr(D=2 � l) ;(3)

where n =

p

P. Let l = 2n�1�k; k = 1; :::; 2n�1. We proceed by case analysis

on the three ranges of k.

First consider range 1 � k � n=2. Choose any corner, introduce Cartesian co-

ordinate system with the origin in that corner and coordinate axes going along the

edges of the mesh. Choose the set of s+1; s = 0; :::; k� 1 nodes with coordinates

(i; j) such that i+ j = s. For each element of the set there are

(k�s)(k�s+1)

2

nodes

in the mesh at distance � l. This is case A in Figure (1). Thus with respect to

any corner

Y

i+j=s

p

i;j

(l) =

 

P � (k � s) � (k � s+ 1)=2

P

!

s+1

:

In order to compute (2) we �nd a product over all s = 0; :::; k � 1 for all corners,

Pr(D=2 � l) �

k�1

Y

s=0

 

1�

(k � s) � (k � s+ 1)

2 � P

!

4�(s+1)

;(4)

for l � 3=2n � 1.

Now consider range n=2 < k < n. In this case there are two types of nodes: �rst,

those for which only one triangle domain exists; second, those with two domains.

These are cases B and C in Figure (1). For the �rst type of nodes the above

analysis works. Consider the node of the second type which is at distance s < k
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A B C

Figure 1: All mesh nodes are assumed to be at junctions of horizontal and vertical

lines. Case A corresponds to the range 1 � k � n=2, cases B and C to the range

n=2 < k < n. Case A: k = 3; s = 1, two nodes with coordinates i + j = s are

marked with dots, the triangle contains nodes at distance � 8; case B: k = 5; s =

3, there exist one triangle domain of nodes at distance � 6 (�rst type); case 3:

k = 5, s = 2, s

0

= 3, there exist two triangle domains at distance � 6 separated

by a column (second type).

from one corner and distance s

0

< k from another (each corner is opposite one

triangular domain). Then there exist z+ z

0

nodes at distance � l from that node,

where z =

(k�s)�(k�s+1)

2

, and z

0

=

(k�s

0

)�(k�s

0

+1)

2

. Since k � n � 1 it follows that

minimal l is n, therefore two triangular domains are separated by a column (row)

of nodes at distance < n from the node. Hence p

i;j

(l) = 1 �

z+z

0

P

. From the

inequality 1 �

z+z

0

P

�

�

1 �

z

P

�

�

�

1�

z

0

P

�

valid for z; z

0

� 0 it follows that the

contribution of the factor p

i;j

in (2) can be upper bounded by two factors each

one associated with its triangular domain. This allows us to count contributions

of factors associated with the triangular domains independently. This leads to (4)

which is therefore valid for l � n.

Finally consider range k � n (l � n � 1). Using the inequality Pr(D=2 � l) �

Pr(D=2 � l+ 1), valid for l = 0; :::; 2 � n� 2, we have

n�1

X

l=0

Pr (D=2 � l) � n � Pr(D=2 � n)

= n �

n�2

Y

s=0

�

 

1�

(n� s) � (n+ 1� s)

2 � P

!

4�(s+1)

� n � e

�

2

n

2

�

P

n�2

s=0

(n�s)�(n+1�s)�(s+1)

=

p

P � e

�(

P

6

+P

1=2

+O(1))

�

p

P � e

�O(P)

:

Substituting the bounds on probabilities for the three regions in (3) we obtain the

inequality (1).
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Using the facts that in the wide channel model packets are never delayed and

the minimality of paths under greedy routing, we may conclude that Theorem (1)

gives the lower bound on the time to complete the �rst phase for any routing

scheme, queue size, and queueing discipline. From the fact T � D, we �nd the

lower bound on expected time to solve the random destination routing problem

l:b:(E(T )) = 2 �E(D=2).

We now demonstrate the relationship between random destination routing and

EREW PRAM simulation. Consider random destination routing on a P processor

machine. The probability that any r � 0 processors generate requests to a given

destination whereas the other processors generate requests to some other destina-

tions is

�

P

r

�

1

P

r

(1 �

1

P

)

P�r

. Now consider probabilistic simulation of a P processor

EREW PRAM with shared memory of size M on a P processor mesh with P = P

and distributed physical memory of total sizeM = M. Let H denote a class of M!

permutations. In a single step each PRAM processor reads/writes a single memory

location therefore the probability that any r shared memory locations are in a given

memory module (node) and the other P � r locations in some other modules for

a randomly chosen permutation h 2 H is

�

P

r

� �

M=P

M

�

:::

�

M=P�r

M

� �

1 �

M=P�r

M

�

P�r

.

The probabilities are the same if P !1 andM=P ! 1. Thus we may conclude

that in that limit random destination routing generates a set of communication

patterns identical to that observed with a randomly chosen hash function. The

class of hash functions H is the largest possible, therefore the expected step time

in probabilistic simulation with hash functions (permutations) from H can not

be more than that in simulations with any h 2 H

0

; H

0

� H, i.e. this is a lower

bound.

3 Experiments with the Realistic Model

Though the wide channel model is simple enough for analytical analysis it is not

realistic. In this section we describe a model that can be implemented practically

and compare the predictions obtained in the wide channel model with numerical

simulation in the realistic model. The model we are dealing with is a variant of

the Schnorr-Shamir model with �xed queues. A special communication protocol

is implemented to preserve link and memory queues from over
owing or losing

packets. We call networks possessing this property self-stabilized. Each node has

four input and four output links. Each link has a queue of size one. Communica-

tions are allowed in both directions simultaneously. Packets are routed using the

greedy routing scheme. In that scheme at most three packets may compete for
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the queue. Therefore in addition to the queuing discipline (FIFO in our case) we

must specify a contention resolution rule which we choose to be random winner.

Transferring a packet to the adjacent node takes one time unit.

In the previous section we analysed the performance of random destination

routing. Our practical simulations are carried out for random destination routing

and EREW PRAM simulation, with comparisons justi�ed by the arguments in

the previous section. Memory is randomized by means of the pseudo random hash

function. Recall the de�nition from [9].

De�nition 1 The class H of hash functions h : [0:::M�1]! [0:::M�1] is (c; k)

universal if for all pairwise a

i

2 [0:::M � 1] and b

i

2 [0:::M� 1]; i = 1; :::; k, and

a hash function h 2 H drawn at random, Pr ( h(a

i

) = b

i

; i = 1; :::; k ) �

c

M

k

,

c 2 R, k 2 N.

Given any P pairwise distinct requests hashed to P memory banks by means of

a randomly chosen (c,k)-universal hash function h 2 H, de�ne R

P

max

to be the

maximal expected congestion in one memory bank. From [9] (Corollary from

Theorem[2], p. 346) we have

Fact 1 If H is (c,k)-universal, h 2 H: [0:::M � 1] ! [0:::P � 1] and k =

3 lnP= ln lnP, then for any set S � M; jSj � P of pairwise distinct addresses

R

P

max

� k + cP

2

=k! = O(lnP= ln lnP).

The following fact [3] gives a probabilistic estimate for congestions.

Fact 2 If H is (c,k)-universal, and h 2 H: [0:::M � 1] ! [0:::P � 1] is chosen

at random with equal probability, then for any set S � M; jSj � P of pairwise

distinct addresses the congestion b

i

; i = 0:::P � 1 in any memory module is

8i; P r(b

i

> u) �

8

<

:

c � e

u�1

� u

�u

; if u � k,

c � e

k�1

� u

�k

; if u > k.

In our experiments we used (c; k)-universal hash functions of the form h(x) =

��

P

i=0;k�1

a

i

x

i

�

mod M

0

�

mod P, where a

i

2 [1; :::;M

0

� 1], and M

0

is the

largest prime less than M. Obviously, if k = 2 we have a linear hash function.

Note, that these hash functions evaluate the destination node or memory bank

only. The address within the bank can be easily found but we do not need to

know it. For the hash function in use c < 2, so the direct evaluation based on

Fact 1 gives R

P

max

< 11 for k = 10 and P in the range 16 to 1024.

The RAP memory reference pattern can be described as follows. Each pro-

cessor generates memory request to the virtual address ��#, where � =

h

1; :::; bM

0

=Pc

i

,
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and # is a processor number from 0 to P � 1. For each run a new value of � is

picked at random with equal probability. The following statistics has been collec-

ted over a number of runs: A(T ) { the average time to complete a simulation step,

Max(T ) { maximal time to complete the simulation step, A(�) { average delay

over all packets, Max(�) { maximal delay over all packets. All statistics were

collected twice: for linear and 10-universal hash functions. The results are sum-

marized in Figure 2. From this table we observe that the lower bound l:b:E(T ) and

mesh size 16 64 256 1024 4096

l:b:E(T ) 9:90 23:68 52:44 111:80 233:20

A(T ):rand. dest. 10:13 24:11 52:80 112:11 |

A(T ) : 10-univ. 10:74 26:37 52:86 112:17 |

A(T ) : linear 10:58 26:42 53:05 112:24 |

Max(T ) : 10-univ. 14 30 62 124 |

Max(T ) : linear 18 70 201 125 |

A(�) : 10-univ. :24 :44 :63 :78 |

A(�) : linear :26 :48 :73 :78 |

Max(�) : 10-univ. 4 6 10 12 |

Max(�) : linear 7 44 157 41 |

Figure 2: The �rst row is the lower bound on average time for random destination

routing on a mesh in wide channel model, obtained using theorem (1). The second

row is the average time for random destination routing in the realistic model with

queues of �xed size one. The rest of the table presents statistics collected for

experiments with linear and ten universal hash functions in the realistic model.

The statistics were collected over 3000 runs per case.

the average observed time for random destination routing in the realistic model

A(T ) di�er by less than one for all P in the range 16 to 1024. The di�erence

remains small for the RAP reference problem under pseudo-random hashing and

it does not grow with the dimension of a mesh. The average delay A(�) grows

slowly with the dimension. 10-universal hashing performed better than linear

hashing for all simulated dimensions. Figure 3 presents histograms for packet

delays. Packet delays for 10-universal hash functions �t Leighton's predictions

though we are using queues of size one and a FIFO queueing discipline. The dis-

tributions become less sharp with the dimension but continue to decrement rapidly
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

1024: linear
1024: 10-univ.

256: linear
256: 10-univ

64: linear
64: 10-univ.

16: linear
16 10-univ.

Figure 3: Packet delay distributions in simulation of EREW PRAM on RAP with

memory access randomized by linear and 10-universal hash functions with statistics

collected over 3000 runs.

with the value of delay, so that delays larger than 6 become exceptional. In fact,

the largest observed delay for the 1024 processor mesh over all packets and runs

was only 12. Note that we measured delays on the packet route to the destination

and back. Though linear hashing pictorially exhibits identical behavior with 10-

universal hashing, the worst case observed delay is much larger (157 units for 256

processor mesh). It is important to note that this delay is due to \bad" hashing

resulting in a large memory congestion rather than an example of \bad" routing

with uniform hashing. Maximal congestion is not presented in the table but it was

observed to be almost as large as maximal delay. Note that the small congestion

observed for simulations with 10-universal hash functions are due to the strong

probabilistic guarantee based on facts (1) and (2). On the other hand the \large"

congestion for linear hash functions was observed almost always within 3000 runs

with various randomized seeds. The only experimental result which has to be

explained is the \small" maximal congestion for simulation of the 1024 processor

mesh with linear hash functions. In fact \large" congestion was observed in that

case as well in direct experiments with hash function if the number of runs was

more than 10000. Below we show how \large" congestion may appear in linear

hashing. First recall thatM is assumed to be polynomial in P, i.e. M� P. Lin-

ear hashing h

lin

(x) distributes the set of RAP addresses f� �#j# = 0; :::;P � 1g,

over the banks ((a

1

� � � # + a

0

) mod M

0

) mod P, where P = 2

r

; r > 0. Sup-
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pose, without loss of generality, that a

0

= 0. If a

1

� � � 2

k

q (mod M

0

), and

1 � 2

k

q < bM

0

=Pc, then g.c.d.(2

k

q;P) � 2

k

requests go to the same memory

bank. On the other hand for any a 2 [1; :::;M

0

�1] there exist �

k;q

2 [1; :::;M

0

�1]

such that a

1

� �

k;q

� 2

k

q (mod M

0

), k; q 2 N. If a

1

� � (mod M

0

) > bM

0

=Pc then

\bad" congestion may be observed as well. For more analysis of the probabilities

of these events we refer the reader to [4]. Figure 4 represents histograms for the

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

40 45 50 55 60 65

256: 10-univ.
256: linear

Figure 4: EREW PRAM time step distribution for RAP simulated on a 256 node

mesh with memory access randomized by linear and 10-universal hash functions,

with statistics collected over 3000 runs.

time to simulate a PRAM step on a RAP problem. The peaks occur at even

numbers of steps. As the delay distribution is a rapidly decreasing function, the

sum of probabilities for packets delayed an even number of times (including non

delayed packets) is noticeably larger than that for packets delayed an odd number

of times.

4 Random Destination Routing with Parallel Slackness

Consider the following instance of random destination routing. Each processor

generates q packets destined to any other node with equal probability and receives

back an acknowledgement for each packet. The time to generate a packet is set to

zero. In what follows we will be looking for the lower bound on average expected

time required to perform this routing.

As will be shown later this bound is valid for PRAM simulation [12] in the
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case P = qP (in other words, with parallel slackness). In that setting this is

the lower bound on the average length of a superstep. Due to the pipelining of

the outstanding requests this technique leads to latency hiding in a network. Full

latency hiding requires that the network has a capacity which can handle qP pack-

ets simultaneously. Otherwise, the degree of latency hiding of the self-stabilized

network is limited by the rate at which packets are injected into the network. First

we consider an r-dimensional mesh and applying \edge use" arguments suggested

in [1] derive the lower bound on expected time to execute the random destination

routing instance described above. Later we improve upon that bound and give a

general expression valid for any network.

Let T

q

denote the time required to execute an instance of our random destina-

tion routing problem. Consider an r-dimensional rectangular mesh G

r

= (V

r

; E

r

)

with set of nodes V

r

and set of edges E

r

. Put P = jV

r

j = d

1

�:::�d

r

, d

i

> 1; i =

1; :::; r and L = jE

r

j. The manhattan distance between two nodes x; y 2 V

r

is the

function �(x; y) =

P

r

i=1

jx

i

� y

i

j. De�ne l(x) to be the number of links crossed by

a packet issued at node x 2 V

r

on its way to its destination.

P

x2V

r

l(x) is total

path length for a given instance of the routing problem. If at any time step until

the routing completes some packet crosses each edge and each packet is routed

along the minimal path, then for that routing problem the total time is as small

as possible. Hence for expected time E(T

q

) we have the inequality

E(T

q

) �

E (2 �

P

x2V

r

l(x))

L

=

2 �

P

x2V

r

E(l(x))

L

=

2 � q

L � P

X

x;y2V

r

�(x; y) :(5)

The following Lemma gives

P

�(x; y) for the r-dimensional rectangular mesh.

Lemma 1 For the r-dimensional rectangular mesh

X

x;y2V

r

�(x; y) =

1

3

�

r

Y

i=1

d

2

i

�

0

@

r

X

j=1

d

j

�

1

d

j

1

A

(6)

L =

r

Y

i=1

d

i

�

0

@

r �

r

X

j=1

1

d

j

1

A

(7)

Proof: Base of induction: Consider a one-dimensional array of d nodes. Then

P

d�1

i;j=0

ji� jj =

1

3

� d

2

�

�

d �

1

d

�

and the lemma holds.

Inductive step: Suppose the lemma holds up to dimension k > 1. Consider

k + 1 dimensional mesh G

k+1

= (V

k+1

; E

k+1

). Partition it into d

k+1

isomorphic k-

dimensional sub-meshes G

i

k

= (V

i

k

; E

i

k

); i = 1; :::; d

k+1

, along the k+1 coordinate.

11



Let P

k

=

Q

k

i=1

d

i

, then

X

x;y2V

k+1

�(x; y) =

d

k+1

X

i;j=1

X

x2V

i

k

y2V

j

k

�(x; y) =

d

k+1

X

i;j=1

0

@

X

x;y2V

k

�(x; y) + ji� jj � P

2

k

1

A

=

1

3

�

k+1

Y

i=1

d

2

i

�

0

@

k+1

X

j=1

d

j

�

1

d

j

1

A

:

Here G

k

= (V

k

; E

k

) is a sub-mesh isomorphic to G

i

k

; i = 1; :::; d

k+1

. The proof

of (7) is based on the fact that one-dimensional array of d nodes has d� 1 edges.

Substituting

P

�(x; y) for a square mesh from Lemma (1) in (5) we can prove

the following

Theorem 2 For a square P-processor mesh expected time for random destination

routing is E(T

q

) �

q

3

(

p

P�

1

p

P

) for any q � 1, routing scheme, queueing discipline

and queue size.

The following theorem takes into account bisection width arguments and gives a

better bound than Theorem (2) for a square mesh.

Theorem 3 Given a P processor distributed network with bidirectional links and

bisection width b, the expected time for random destination routing E(T

q

) �

P q

2�b

for any q � 1, routing scheme, queueing discipline and queue size.

Proof: Consider some arbitrary node and suppose that the network is split into

two halves. The half to which the node belongs and the other \distant" half. The

probability that a node generates a request to a node in the distant half is

1

2

. Each

node generates q requests. The probability that k requests cross the boundary is

�

q�P=2

k

� �

1

2

�

q�P=2

. Hence

E(T

q

) � 2 �

P

k

k �

�

q�P=2

k

�

�

�

1

2

�

q�P=2

b

=

qP

2 b

X

k

 

q � P=2 � 1

k � 1

!

�

�

1

2

�

q�P=2�1

=

P q

2 b

:

The square P-processor mesh has a bisection width

p

P, therefore E(T

q

) �

q

p

P

2

.

Repeating arguments of section (2) for the case when each processor of a mesh

simulates qP PRAM processors we can show that if M = P

�

; � > 1 and P ! 1

12
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Figure 5: 1 | average (over 500 observations per point) time, A(T

q

=q) for random

destination routing on a 64 node square mesh (realistic model with greedy routing,

FIFO queues of size 16) as a function of number requests per node q; 2 | lower

bound from theorem 3.

then the expected time for random destination routing is equal to that for prob-

abilistic PRAM simulations with memory randomized by means of hash function

h 2 H, where H is a class of all permutations. Therefore we conclude that in that

limit the expected length of a superstep is �

P q

2 b

for any probabilistic simulations

of a qP processor EREW PRAM on a P processor mesh with M = M.
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