
Compositional Construction of SWN models

Technical Report No. CSG-21-96

Isabel Rojas

�

Department of Computer Science

University of Edinburgh

Abstract

This report presents a method for the compositional construction of

Stochastic Petri Net models. The method is de�ned over Stochastic Well-

formed Nets in order to take advantage of the state space reduction prop-

erties of this formalism. The set of composition operations is based on

the operators of Stochastic Process Algebra, augmented with operations

that re
ect the di�erent types of synchronisation supported by Petri nets.

Several examples are presented to illustrate the use of the method. These

are developed following a set of guidelines for model construction.

�

The author is supported by a grant from the Venezuelan Government Research

Council(CONICIT)

1

1 Introduction

Process Algebras (PA) are abstract languages for the speci�cation and under-

standing of concurrent systems. Well-known examples include the Calculus of

Communicating Systems (CCS) [1] and Communicating Sequential Processes

(CSP) [2]. A system is characterised by its active components and the com-

munications between them. Actions are the building blocks of the system. They

are used to describe sequential components that run concurrently and cooper-

ate through communication. Unlike Petri nets there is no notion of entity or

ow within the model. However, compositional reasoning is an integral part of

the language. Complex systems are built starting from actions and applying the

constructors of the algebra which are operators available for composition as well

as mechanisms for abstraction, which disregard internal details. PA models are

created by the composition of processes or components, which are normally asso-

ciated with certain functions or subsystems of the system modelled. In contrast,

most Petri net (PN) based modelling formalisms represent the system modelled

as a
at net. This net may not clearly re
ect the elements that participate in

the system and the way they communicate or interact. It can also be di�cult

to determine the model's behaviour, to prove some of its properties and can it

a�ect the understanding of the model by others. The creation of a PN model is

mostly state driven. The evolution from one state to another is what de�nes the

structure of the net. Therefore it can be the case that a function of a process in

the system modelled is represented by a set of dispersed transitions, thus making

it di�cult to isolate the elements representing a certain process from a given

structure.

Viewing the model as a set of components that interact is more appropriate,

especially for models of parallel and distributed systems. As stated in [3] the

way in which distributed systems are perceived is as loosely coupled components

running in parallel and communicating by message passing. The description,

construction and evolution of these systems is facilitated by separating the system

structure into a set of components with autonomous behaviour.

Based on sub-models representing components of a system, a model can then

be developed as the composition of sub-models. Composition leads to a hierarch-

ical approach to model construction. The resulting model has a structure that

re
ects the structure of the system itself. Models of components can be developed

by di�erent modellers and, in principle, libraries of re-usable components can be

formed.

There have been many studies on compositional construction of untimed PN

models, for example [4, 5, 6]. Most have been aimed at the deduction of structural

properties of the composed model and the compositional construction of its state

space. In [7], for example, a client-server protocol is de�ned for the composition of

PN models. It divides the model into client, server and client-server components,

and de�nes a set of basic rules on which the protocol relies. Communication

2

is asynchronous and there is no notion of synchronisation between components

other than the client-server relation.

Stochastic Petri Net (SPN) formalisms do not o�er explicit primitives for the

compositional construction of models. To the best of the author's knowledge, the

closest approach to formally de�ning compositional primitives in SPN are the

join and replicate operators proposed in [8]. However, these operators are de�ned

to compose systems from repeated structures (through the replicate operator)

previously identi�ed, and allow them to communicate in an asynchronous manner

(through the join operator). The compositional construction allows the modeller

to take advantage of the repeated structure in the model, and of the reward

structure de�ned over the model, to reduce the state space required to obtain

performance measures for the system. There is no support for compositional

operations such as concurrency, choice or sequential composition.

Donatelli's recent work on Superposed Stochastic Automata (SSA) [9] and

Superposed GSPN (SGSPN) [10] emphasises composition, but from the point of

view of the solution of the associated Markov process. In both cases the model is

de�ned as a set of interacting components, but the interactions are not de�ned as

part of a basic formalism. Moreover, the way in which components can interact

is limited to synchronous communication between components.

In [11], Hierarchical Generalised Coloured Stochastic Petri Nets (HGCSPNs)

and Stochastic Well-Formed Nets (SWN)[12] are combined to generate a reduced

Markov Chain from a hierarchical net speci�cation. Subnets are combined in

a higher level of hierarchy by using an aggregate view of the subnet behaviour

which is relevant to its environment. This method only supports communica-

tion between subnets in an asynchronous manner. Buchholz also proposes an

approximate aggregation method to allow the analysis of larger nets.

Stochastic Process Algebras (SPA) have been introduced for generating per-

formance aspects in the functional analysis of complex systems. They are based

on untimed Process Algebra, and extend the basic actions with exponential delays

to generate a Markov process from which performance measures of the system

modelled can be derived. Examples of some SPA are Performance Evaluation

Process Algebra (PEPA) [13] and Timed Performance Processes (TIPP) [14].

In [15] it is suggested that perhaps the best way to incorporate compositional

primitives into SPNs would be based on the operators of SPA. A straightforward

translation, however, would not take into account the synchronisation properties

of the Petri net formalism. In this report we de�ne a set of operators for the

composition of SWN, a class of coloured SPN. These operators are based on those

of SPA. The de�nitions have been made over SWN in order to take advantage of

the state space reduction properties de�ned for SWN. A component is viewed as

a blackbox for which an interface is de�ned. This interface will correspond to the

set of places and transitions by which the component can interact, communicate

or synchronise with other components in the system.

The rest of this report is structured in the following way. In Section 2 we

3

brie
y introduce SWN, outlining the concepts of relevance for the de�nition of

the composition operations for the creation of SWN models. We then proceed, in

Section 3, to describe the compositional SWN model proposed. Here we de�ne

the general structure of the components and the composition operations. This

section is concluded with a small example that illustrates how the operators

proposed can be employed to obtain a model of a system through the composition

of its parts. In Section 4 we propose a set of construction guidelines based on

the information about sub-components that is required, preserved and/or lost

when applying each of the composition operators. At the end of this section we

present another, slightly more complex, example to which we apply the guidelines

proposed. Finally in Section 5 we present the conclusions of this work and discuss

topics of further research in this area.

2 An introduction to Stochastic Well-Formed Nets

In this section I will assume that the reader is familiar with the Petri net notation

(GSPN, SPN, etc.), both uncoloured and coloured versions. Therefore, I will only

brie
y introduce their de�nitions as a way of refreshing the reader's knowledge.

For further details the reader is referred to [16], for the uncoloured versions, and

to [17], for the coloured.

Let us �rst explain some notation to be employed in this section. Given

fF

1

; � � � ; F

n

g, a family of sets with a set of indexes I = f1; � � � ; ng, the Cartesian

product of this family is denoted by

N

i2I

F

i

. A multiset is, intuitively, a set that

can contain several occurrences of the same element. We will denote by Bag(A)

the set of �nite multisets over a set A.

2.1 Petri nets

Petri nets (PN) are a graphical and mathematical modelling tool for describing

concurrent systems. Graphically the systems are modelled by means of entities

called places and transitions, which can be connected by oriented arcs. Trans-

itions represent events, while places represent conditions. PN can be seen as

directed bipartite graphs PN = (V;A), whose set of nodes V can be partitioned

into two disjoint sets of places and transitions. The arcs in A can go from places

to transitions (input arcs) or transitions to places (output arcs).

Formally, a PN model is de�ned as a 4-tuple:

PN = hP; T; In;Oi

where:

� P a �nite set of places;

� T a �nite set of transitions, P \ T = ;;

4

� In � P � T the set of input arcs; the function W

�

(p; t) : In ! N

+

gives

the multiplicity of the input arc from p to t;

� O � T � P the set of output arcs; the function W

+

(p; t) : O ! N

+

gives

the multiplicity of the output arc from t to p.

We allow more than one arc to connect a place p to a transition t, or viceversa.

These arcs are replaced by a single weighted arc, where the weight, or multiplicity,

corresponds to the original number of arcs connecting p with t, or vice-versa. A

place p is an input place of a transition t if there is an arc from p to t. p is

an output place of t if there is an arc from t to p. We denote by

�

t and t

�

the

sets of input and output places, respectively, of a transition t; and by W

�

(p; �)

and W

+

(p; �) the set of transitions for which p is an input or an output place,

respectively.

An extension of PN is the incorporation of a third type of arc, called inhib-

iting arcs that also connect places with transitions (H � P � T). The function

W

h

(p; t) : H ! N

+

gives the multiplicity of the inhibiting arc from p to t. Their

use will be made clear later.

The notion of distributed state is supported in PN by the introduction of a

marking function M : P ! N. M(p) speci�es the number of tokens contained in

a place p. The initial marking of the net represents initial distribution of tokens

in the places of the net. A PN system is given by a PN structure plus an initial

marking.

The dynamic behaviour of a PN system is speci�ed by the enabling and �ring

rules. A transition t is said to be enabled if each of its input places has at

least as many tokens as the multiplicity of the input arc from the place to the

transition t, and if each inhibiting place p

h

of the transition has less tokens than

the multiplicity of the inhibiting arc from p

h

to t. Enabled transitions can �re,

removing from each input place, as many tokens as the multiplicity of its input

arc, and placing in each output place, as many tokens as the multiplicity of its

output arc.

2.2 Coloured Petri Nets

CPNs have been introduced as a modelling tool to represent and study complex

systems with symmetric characteristics. Colours are mainly used to model two

aspects: di�erent behaviour patterns of entities in the system, and di�erent parts

of the system with similar or equivalent structure [18]. With the use of CPNs,

the symmetries in the system can be expressed in a more compact form than

with normal (non-coloured) Petri nets. They are used to group transitions with

similar behaviour, that di�er according to their entries (tokens). Di�erent entities

(resources, data, etc.) are identi�ed by di�erent \coloured" tokens that can
ow

through the net. Colouring could refer to places, transitions or tokens. Not only

5

can the colouring be used as a way to represent, in a more compact form, a

symmetric Petri Net, but the colour of a token can supply information useful for

the determination of parameters of the net.

There are various de�nitions of CPNs, which di�er mainly by which elements

are considered to be coloured [19], [18] and [17]. We will de�ne a Colour Set of

a place as the set of colours that tokens can take in a place. Each token can

take one colour, and there could be more than one token per colour. We require

colour sets to be �nite in order to ensure that a coloured net may be `unfolded'

into its equivalent PN. The colour of a transition is determined by the colour of

its input and output places.

Formally, a CPN is a tuple (P; T;C;�;W

+

;W

�

;M

0

) where:

� P is a �nite, non-empty set of places;

� T is a �nite, non-empty set of transitions; P \ T = ;;

� � is a �nite set of types called Colour Sets;

� C is a function from places to colour sets, C : P ! �, which associates

each place with a colour set;

1

we denote by C(p) the colour set of a place p,

and similarly C(t) as the colour set of a transition t;

� W

�

;W

+

are a set of functions W

�

(p; t);W

+

(p; t) : C(t)! Bag(C(p));

� M

0

is the initial marking.

The function, M , de�ning a marking in the CPN,M : C(p)! N, determines

for each place how many tokens there are of each colour of its associated colour set.

If a place p is not input(output) to a transition t the functionW

�

(p; t)((W

+

(p; t))

will return 0.

The �ring rule is de�ned by:

� A transition t is enabled for a marking M and a colour c

t

2 C(t) if and

only if: 8p 2 P : M(p) �W

�

(p; t; c

t

);

� The �ring of t for a marking m and a colour c

t

2 C(t) gives a new marking

M

0

de�ned by: 8p 2 P : M

0

(p) =M(p)�W

�

(p; t; c

t

) +W

+

(p; t; c

t

).

2.3 Well-Formed Nets

Well-formed coloured nets (WN's) are identical to Coloured Petri nets (CPN's)

from an expressive power point of view [12]. Any CPN can be translated, into an

equivalent WN model with the same underlying structure. In WN the expression

1

The colour domain of a transition is determined by the colour set of it input and output

places

6

of the colour functions and of composition of colour classes are rewritten in a

more explicit or parametric form, in terms of a set of basic constructs provided

by the formalism.

In WN's a token can be regarded as an instance of a data structure with a

certain number of �elds whose semantics depends on the place that the token

belongs to. The de�nition of the \data type" associated with each place is called

place colour domain. The colours representing elements of the same type are

grouped in a class. The domain of a place is selected from a set of basic types

called colour classes. We will denote as C

i

with i ranging from 1 to n, the colour

classes of the net. Elements within a colour class may be ordered, assuming that

this ordering is circular, so that the successor function applied to the last element

returns the �rst one. When objects of the same class have di�erent behaviour it

is important to partition the class into (static) sub-classes, denoted D

i;q

where

q = f1; :::; n

i

g and i is the identi�er of the colour class they belong to.

WN's distinguish three main families of colour functions:

� The projection or identity function X, which allows the selection of a par-

ticular object in a class C

i

or in a sub-class D

i;q

.

� The successor function !X (or �X) to be used on ordered sets. It represents

the successor of the object selected by X, which means that it only makes

sense when it is applied over a transition which also has a function X in

one of its arcs.

� The di�usion or synchronisation function S. When associated with an input

arc it represents the synchronisation of all the elements of the colour domain

of the connected input place. If it is on an output arc, it will di�use all the

object of its colour domain. This function can also be de�ned over static

sub-classes of the colour domains of the associated input or output place,

in this case denoted by S

i;q

, where i refers to the colour class C

i

and q to

the static sub-class within C

i

The transitions in a WN can be considered as procedures with formal para-

meters. These parameters are called transition colour domains; their declaration

is part of the net description, and the type associated with each parameter must

be a colour class. The colour domain of a transition t (C(t)) is constrained by

the colour domains of its input, inhibitor and output places. A transition, whose

formal parameters have been instantiated to actual values is called a transition

instance, denoted [t; c], where c 2 C(t) represents the assignment of actual val-

ues to the transition parameters. The enabling of a transition instance [t; c] is

determined by evaluating the transition's predicates and the arc expressions of

all input and inhibiting places with respect to the assignment c.

A major interest of WN's is that they provide a modelling framework in which

symmetries appear naturally. This allows the reduction of the size and complexity

7

of the representation, maintaining the modelling power of unconstrained coloured

nets.

Let us now introduce the formal de�nition of WNs as given in [12].

De�nition 1 A Well-Formed net system is a 10-tuple

WN = hP; T;C; J;W

�

;W

+

;W

h

;�; �;M

0

i

where:

1. P is a �nite set of places;

2. T is a �nite set of transitions, P \ T = ;;

3. C is the family of colour classes: C = fC

1

; :::; C

n

g (we denote by I = 1; :::; n

the ordered set of indexes) with C

i

\C

j

= ; for any C

i

; C

j

2 C; Any C

i

2 C

is possibly partitioned into static sub-classes C

i

=

S

n

i

q=1

D

i;q

;

4. J : P [T ! Bag(I), where Bag(I) is the multiset on I. C(�) = C

J(�)

denotes the colour domain of node � ;

5. W

�

;W

+

;W

h

: W

�

(p; t);W

+

(p; t);W

h

(p; t) 2 [C

J(t)

! Bag(C

J(p)

)] the in-

put, output, and inhibition functions are arc expressions;

6. �(t) : C

J(t)

! fTRUE,FALSEg is a standard predicate associated with a

transition t. By default we will assume that 8t 2 T; �(t) =TRUE;

7. � : T ! N the priority function. By default we will assume that

8t 2 T �(t) = 0;

8. M

0

:M

0

(p) 2 Bag(C(p)) is the initial marking.

The syntactic de�nition of WN's leads to new algorithms based on the concept

of symbolic marking [12]. A symbolic marking represents an equivalence class on

the state space of the WN model. The symbolic reachability graph (SRG) of a

WN is based on the idea of symmetry of objects of the basic colour classes. It

consists of a symbolic representation of all possible states of a model and the

possibility of transition from one to another. The symbolic markings together

with a symbolic �ring rule allow the construction of the SRG.

The symbolic marking introduces the concept of dynamic sub-classes, which

represent sets of objects that are not identi�ed individually but are known to

permute with each other in any �ring instance to produce markings that belong

to the same equivalence class. A dynamic sub-class is characterised by its cardin-

ality, and by the static sub-classes to which the represented objects belong. The

concept of dynamic sub-class a�ects both the symbolic marking representation

and the symbolic �ring. Using dynamic sub-classes instead of variables in the

8

marking representation allows a much more compact description of the marking

itself. The set of dynamic sub-classes of a colour class C

i

in a marking M is de-

noted by

b

C

i

= fZ

j

i

j 0 < j < mg, where m is the number of dynamic sub-classes

of C

i

in a markingM . The extended notation

^

C(�); � 2 P [T is used to denote

the set of all possible tuples of dynamic sub-classes in a place/transition colour

domain.

2.4 Stochastic Well-Formed Nets (SWNs)

The step fromWN's to Stochastic Well-Formednets (SWN) is similar to that from

an untimed PN with priorities to GSPNs (see [16] for going from an untimed PN

model to a GSPN model). Here transitions can be timed (with an exponentially

distributed delay function) or immediate (with �ring time zero). In order to

guarantee the presence of symmetry, not only from a logical, but also from an

stochastic point of view, mean values of transition �ring delays can be dependent

only on static sub-classes; they cannot be a function of the objects in the class.

In this way all objects of a given static sub-class give rise to the same transition

�ring delay. This can be formalised by the introduction of the following notation.

Let

~

C

i

= fD

i;1

; � � � ;D

i;q

g

be the set of static sub-classes of a basic colour class C

i

. Analogously with the

notation introduced for dynamic sub-classes, given a transition t with colour

domain C(t) = C

J(t)

we de�ne

~

C(t) = f

n

O

i=1

e

i

O

j=1

D

i;u(i;j)

j 0 < u(i; j) � n

i

g

as the colour domain of t de�ned in terms of the static sub-classes of the basic

colour classes that participate in C(t), considering that elements of a static sub-

class have the same e�ect on the �ring delay of t. Here e

i

denotes the number of

occurrences of C

i

in C(t) and u(i; j) determines which of the static sub-classes of

C

i

is represented in the j

th

occurrence of C

i

in the colour domain of t.

For any c =

N

n

i=1

N

e

i

j=1

c

j

i

2 C(t) we also de�ne ~c =

N

n

i=1

N

e

i

j=1

~c

j

i

2

~

C(t)

such that ~c

j

i

= D

i;q

i� c

j

i

2 D

i;q

.

We de�ne the static partition of a marking M denoted

~

M(p) 2 Bag(

~

C(p)) as:

~

M(p)(~c) =

X

c

0

:~c

0

=~c

M(p)(c

0

)

for which following property holds.

8M;M

0

2 M;8p 2 P;

~

M (p) =

~

M

0

(p)

9

where M is the set of all possible markings of the model.

The static partition of a marking represents, for each place and for each

Cartesian product of static sub-classes, the number of tuples in the place that

belong to the same Cartesian product of static sub-classes.

Hence, we can de�ne the static partition of a symbolic marking as well and

denote it

~

M.

Having introduced this notation we can now formally de�ne Stochastic Well-

formed nets.

De�nition 2 A Stochastic Well-Formed coloured net is a pair SWN = hWN; �i

such that

� WN is a well-formed Petri net;

2

� � is a function de�ned on the set of transitions T such that

�(t) :

~

C(t)�

O

p2P

Bag(

~

C(p))! R

For any timed transition t, the function �(t)(~c;

~

M) represents the average

�ring rate for any instance of transition [t; c] enabled in marking M . If t is

an immediate transition, the same function is interpreted as the weight to be

normalised within a con
ict set in order to obtain the following probability:

�(t)(~c;

~

M)

P

M [t

0

;c

0

i

�(t

0

)(~c

0

;

~

M)

The immediate transitions have �ring priority when con
icting with timed

transitions. Con
icts between timed transitions are solved by applying a race

policy, whereas con
icts between immediate transitions are solved by the use of

di�erent levels of priority or by a probabilistic function.

3 De�ning a Compositional SWN model

In Stochastic Process Algebra (SPA) the duration of an activity is determined

by a random variable with negative exponential distribution. An activity is de-

scribed by its type and its rate, i.e. the parameter of the negative exponential

distribution governing the duration of the activity. A system is described as an

interaction of components. Each component maybe atomic or may itself be com-

posed of components. The grammar of the language de�nes the ways in which

the behaviour of a component may be built up from activities or an interaction

2

Where we distinguish two types of transitions, namely timed (with priorities equal to zero)

and immediate (with priorities greater than zero).

10

of components. The notions captured by the combinators de�ned in the dif-

ferent SPA developed di�er, for example PEPA captures the notions of pre�x,

choice, cooperation and hiding, whereas TIPP apart from these has an explicit

combinator for the notion of recursion. In general the notions captured in the

combinators of SPA are a subset of those of untimed process algebras. For further

details on SPA the reader is referred to [13].

The operations de�ned for the creation of compositional SWN models are

based on the compositional combinators of SPA. We have incorporated some

additional ones, based on the
exibility and versatility of stochastic Petri net

models and the types of synchronisation supported by them.

WN permit the identi�cation of model symmetries by means of the symbolic

reachability graph, reducing the state space representation of the model [12], and,

as previously mentioned, are identical to CP-nets from an expressive power point

of view. For this reason we work with SWNs rather than CP-nets. The operators

de�ned can be applied to uncoloured nets, considering them as neutral-coloured

SWNs. The concept of inhibiting arc has been omitted except in the de�nition

of the polite communication (See section 3.4.5).

3.1 A Compositional Structure

In order to view the system as formed by components that synchronise or commu-

nicate with each other, it is necessary to determine how this communication can

be made (places, arcs and/or transitions) and how much information is required

about a component in order to communicate with it. This should be established

according to the way we want the components to communicate, i.e. if two compon-

ents need to communicate in an asynchronous manner, then the communication

should be made through places; if the components need to synchronise, then the

best mechanism is through transition fusion. We will not consider arc commu-

nication in this work, as it would mean modifying the input or output set of the

transitions of a component. In [7] a study of the advantages and disadvantages of

each type of communication is presented, as an introduction to the Client-Server

protocol.

It is not desirable to have to know the whole net structure of a component

in order to allow it to communicate with another. Associated with the notion of

abstraction in an SPA, it is desirable that certain parts of the net structure of a

component are visible only to the component itself. In this work a component is

de�ned as a blackbox with an associated interface by which it can communicate

and/or synchronise with other components.

The interface of a component is de�ned as a set of entry places (ES), by

which a component receives information from other components, a set of �nal

places (FS), from which the component transfers information to others, and a

set of synchronising transitions (ST), by which the component can synchronise

with other components.

11

3.2 Data Flow versus Control Flow

When de�ning a compositional formalism in Petri nets we also have to associate

a meaning to the tokens or elements transferred between the components. In

SPAs there is no notion of data or information
ow. In Petri nets to say that a

component A occurs before a component B, can mean either that A has to arrive

at a complete halt before B can proceed, or that A processes information and

transfers the output to B, i.e. the communication between components can be

seen either as a control
ow relation or a data
ow relation.

In SPA, where data is not represented, the relation is implicitly control
ow.

Our initial work with a compositional formalism for Petri nets we tried to follow

this approach. Re-installing the initial marking of each component and guaran-

teeing a strict order in the transition �ring in di�erent components, turned out

to be di�cult problems with a strict control
ow relation. Subsequent work has

focussed on data
ow and the rest of this report will present that work.

3.3 The Basic Element

Based on the idea of a basic element de�ned in SPA, as the basic construc-

tion component and its representation in GSPN [15], a similar concept for a

SWN component is introduced. Components can be created by the composition

of components or can be a basic component, i.e. non-decomposable into sub-

components. All components have the same blackbox structure, a blackbox with

an interface, which constitutes a basic block for the construction of more complex

components.

De�nition 3 A basic SWN (bSWN) is a net in which there is only one transition

(T

1

) with rate � � 0. T

1

has a set of input places (In) and a set of output places

(O), either of which could be an empty set. The input places cannot intersect

with the output places. The set of entry places ES = In, the set of �nal places

FS = O and ES \ FS = ; (see �gure 1).

.

.

.

.

.

.

T

1

S

S

P

k

C

k

C

1

P

1

P

i

C

i

P

n

C

n

f

1

f

k

f

i

f

n

ES FS

Figure 1: Basic SWN component

12

A bSWN will have an initial parametric marking (MP) [16], which represents

a family of PNs with the same structure. The transition T

1

of a bSWN can be

declared as synchronise-able or not. Formally this is de�ned in the following way:

De�nition 4 A basic SWN (bSWN) is a SWN

S = hP; T;C; J;W

�

;W

+

;W

h

;�; �;MP; �i

where:

� T = fT

1

g is the transition of the bSWN; ST = fT

1

g if T

1

is synchronise-

able otherwise ST = ;;

� P =

�

T

1

[T

1

�

; where

�

T

1

are the input places of transition T

1

and T

1

�

its

output places; ES =

�

T

1

and FS = T

1

�

;

� C is the family of colour classes: C = fC

1

; :::; C

n

g (we denote by I = 1; :::; n

the ordered set of indices) with C

i

\ C

j

= ; for any C

i

; C

j

2 C; there is no

C

i

2 C that is partitioned into static sub-classes C

i

=

S

n

i

q=1

D

i;q

;

� J : P [T ! Bag(I), where Bag(I) is the multiset on I.C(�) = C

J(�)

denotes the colour domain of node � ;

� 8p 2 P; W

�

(p; T

1

);W

+

(p; T

1

) : C(T

1

) ! Bag(C(p)), are the set of input

and output arc functions of T

1

, respectively; respectively;

� W

h

= ;;

3

� �(T

1

) : C

J(T

1

)

! fTRUE;FALSEg is a standard predicate associated with

the transition T

1

. By default �(T

1

) = TRUE;

� �(T

1

) � 0; T

1

can be either a timed or an immediate transition;

� �(T

1

) � 0; If �(T

1

) > 0 then �(T

1

) = 0 else �(T

1

) > 0;

� MP is the initial parametric marking of the places in P; 8p 2 FS :

MP (p) = 0.

We can de�ne a transition predicate for T

1

via the function �, which will be

evaluated in every instantiation of the transition. The function � will de�ne the

priority of the transition, if it is a timed transition (�(T

1

) > 0) then it will have

priority 0, and if it is a immediate transition (�(T

1

) = 0) then it will have a

priority greater than or equal to 0. This priority is independent of the priority of

possibly con
icting transitions, and has to be determined from the moment the

transition is de�ned.

Di�ering from the basic element in SPA, a basic SWN can execute the same

action a �nite number of times, i.e. transition T

1

can �re a �nite number of times,

depending on its initial marking and the multiplicity of its input arcs.

3

Inhibiting arcs cannot be de�ned in a bSWN.

13

3.4 Compositional Operations

Following the de�nition of a component in Section 3.1 and the concept of a

bSWN, the concept of a compose-able SWN is introduced, viewing a bSWN as its

fundamental element.

De�nition 5 A compose-able SWN (cSWN) is either a bSWN or a composition

of cSWNs.

cSWN ::= bSWN j cSWN � cSWN j �cSWN

where � represents any binary composition operator and � an unary operator.

In order to compose cSWNs it is necessary to de�ne a set of composition

operations. In the following examples given to illustrate the operations, the

elements composed are bSWN, however, the de�nitions are given in terms of

cSWN.

3.4.1 Sequential Composition

A component S is obtained from the sequential composition of two components

L and R (L ;R), when the �nal set of L (FS

L

) intersects with the entry set of

R (ES

R

). This means that L transfers information into R. In order to de�ne

which places participate in the transfer of information between the components,

it is necessary to de�ne a function � : (FS

0

L

� FS

L

)! ES

R

that associates �nal

places of L with entry places of R. For a place p

l

2 FS

0

L

with �(p

l

) = p

r

where

p

r

2 ES

R

, then C(p

l

) = C(p

r

) (C(p

i

) is the colour domain of p

i

). If this does

not hold, then there is no sense in establishing this relation because some of the

elements that are de�ned in C(p

l

) are not in C(p

r

) or viceversa (see �gure 2).

Places in the FS

0

L

that are output places of a common transition cannot have

the same image in ES

0

R

, otherwise we would be creating parallel arcs.

T

1

T

2

P

1

P

3

P

4

m m

f

1

f

2

f

3

f

4

C

1

P

2

C

4

C

2

= C

3

L R

S

T

1

T

2

m m

f

1

f

4

f

3

f

2

C

1

C

3

C

2

C

3

C

4

P

4

P

3

P

1

Figure 2: Sequential Composition of SWN components

14

Formally the cSWN S resulting from the sequential composition of two cSWNs,

L ;R is a cSWN de�ned as:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

� P

S

= P

L

[P

R

� FS

0

L

, where FS

0

L

is the subset of places in the domain

of the function �. ES

S

= ES

L

[ES

R

� ES

0

R

; where ES

0

R

is the subset

of places in the range of the function �. FS

S

= FS

L

[FS

R

� FS

0

L

;

8p

i

; p

j

2 FS

0

L

; if �(p

i

) = �(p

j

) then W

+

L

(p

i

; �) \W

+

L

(p

j

; �) = ;;

� T

S

= T

L

[T

R

; ST

S

= ST

L

[ST

R

;

� C

S

= C

L

[C

R

;

� W

�

S

= W

�

L

[W

�

R

;

� W

+

S

= W

+

L

[W

+

R

� fW

+

L

(p

j

; t

i

) j t

i

2 T

L

p

j

2 FS

0

L

g [fW

+

(p

j

; t

i

) j t

i

2

T

L

p

j

2 ES

0

R

such that 9p

k

2 FS

0

L

: �(p

k

) = p

j

p

k

2 t

�

i

g; It holds that

W

+

S

(p

j

; t

i

) = W

+

L

(p

k

; t

i

) with p

j

and p

k

as last de�ned;

� W

h

S

= W

h

L

[W

h

R

;

� 8t 2 T

S

:

4

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� � : T ! N the priority function;

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� MP

S

the initial parametric marking of S;

8p 2 P

S

;MP

S

(p) =

�

MP

L

(p) p 2 P

L

� FS

0

L

MP

R

(p) otherwise

� �, function that associates a weight to each transition.

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

4

The predicates de�ned over the transitions of the components L and R are preserved in S

15

3.4.2 Choice (Pre-selection) Composition

The choice operator permits the probabilistic selection of the sub-component to

which a given type of information should be transferred. It is necessary to de�ne

which places of the ES of each component participate in the choice. Each com-

ponent is assigned a weight (w(Q), where Q is the name of the sub-component)

corresponding to the probability that it receives the information related to the

choice. This weight is assigned to an immediate transition (t

Q

) associated with

the sub-component. The structure of the resulting component is obtained by aug-

menting the net with a place and two sets of arcs. The place (the choice place, p

c

)

acts as an entry to the choice component. The �rst set of arcs are from the choice

place into each of the immediate transitions associated with the sub-components.

The second set of arcs are from each of these immediate transitions to each place

in the set of selected places in the entry set of their corresponding sub-components

(see �gure 3). The arc function on these arcs is the identity function, to make

the choice completely probabilistic, neither in
uenced nor determined by the arc

functions. The choice operator only makes sense if all places participating in

the choice have the same colour domain, i.e. compete for the same information.

The colour domain of the choice place will be that of the participating places.

The choice operation can only be de�ned between distinct components|this is

to avoid a transition in a component being immediately enabled by both paths

of the choice. The function Choice, de�nes the subset of places of the ES of a

component involved in the choice operation.

T

1

T

2

m

m

f

2

p

c

t

L

t

R

C

i

S

C

i

= C

1

= C

3

P

4

C

4

X

X

X

X

C

1

P

1

P

2

C

3

P

3

C

2

f

4

f

3

f

1

Figure 3: Choice composition of SWN components

Formally the cSWN S resulting from the choice composition of two cSWNs,

L + Rfw(L); w(R)g (where w(P) is the weight of a component P) is a cSWN

de�ned as:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

16

� P

S

= P

L

[P

R

[fp

c

g, where p

c

is the entry place of the choice composition.

ES

S

= ES

L

[ES

R

[fp

c

g � Choice(L) � Choice(R); where Choice(L)

and Choice(R) are the subset of places of ES

L

and ES

R

, respectively, that

participate in the choice operation; FS

S

= FS

L

[FS

R

;

� T

S

= T

L

[T

R

[ft

L

; t

R

g, where t

L

and t

R

are the immediate transitions

incorporated by the choice operation, associated with the components L

and R, respectively; ST

S

= ST

L

[ST

R

;

� C

S

= C

L

[C

R

; 8p

i

; p

j

2 Choice(L)[Choice(R) : C

S

(p

i

) = C

S

(p

j

) = C

S

(p

c

);

8p 2 P

S

� p

c

: C

S

(p) =

�

C

L

(p) p 2 P

L

C

R

(p) p 2 P

R

� W

�

S

= W

�

L

[W

�

R

[fW

�

(p

c

; t

L

);W

�

(p

c

; t

R

)g ; whereW

�

S

(p

c

; t

L

) = W

�

S

(p

c

; t

R

) =

X the identity function de�ned over the colour domain of p

c

;

� W

+

S

= W

+

L

[W

+

R

[fW

+

(p

j

; t

L

) j p

j

2 Choice(L)g [fW

+

(p

k

; t

R

) j p

k

2

Choice(R)g; 8p

i

2 Choice(L) [Choice(R) : W

+

S

(p

i

; t

L

) = W

+

(p

i

; t

R

) = X

(the identity function de�ned over the colour domain of p

c

);

� W

h

S

= W

h

L

[W

h

R

;

� 8t 2 T

S

:

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� � : T ! N the priority function;

�

S

(t) =

8

<

:

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

0 t = t

L

_ t = t

R

� 8p 2 P

S

MP

S

(p) =

8

>

>

>

>

<

>

>

>

>

:

MP

L

p 2 P

L

� Choice(L)

MP

R

p 2 P

R

�Choice(R)

0 p 2 Choice(L) [Choice(R)

P

p

i

2Choice(L)

MP

L

(p

i

)+

P

p

j

2Choice(R)

MP

R

(p

j

) p = p

c

� �, function that associates a weight to each transition.

�

S

(t) =

8

>

>

<

>

>

:

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

w(L) t = t

L

w(R) t = t

R

17

3.4.3 Competing and Independent Parallel Composition

Parallel composition is de�ned over two components that can \execute" or have

an active token game simultaneously, and possibly independently. Let us consider

the parallel composition of the sub-components L and R to obtain the compon-

ent S. Two types of parallelism can be de�ned: independent or competing. In

independent parallelism the ESs of the sub-components are kept separate and

the resulting ES is just a union of the ESs of the subnets, i.e. ES

S

= ES

L

[ES

R

.

In competing parallelism a subset of the places of ES

L

is joined with a subset

of places of ES

R

, provided that their colour domains are equal, so that the sub-

components will compete for tokens within these joined places. This di�ers from

the choice composition in the way in which it is determined which sub-component

extracts the tokens (�res). Instead of explicitly de�ning probabilities, as in the

choice, here the competition is resolved by a race policy (if all the con
icting

transitions are timed), by priorities, or at random (if they are all immediate).

This implies that transitions of di�erent sub-components can con
ict, i.e. the �r-

ing of a transition in one component can a�ect the enabled condition of another

transition in the other component. To determine the sets of con
ict places, we

de�ne a function � : (ES

0

L

� ES

L

) ! ES

R

, which de�nes the ordered pairs of

places which are to be merged (fused). The name of a place resulting from the

merging of two places p

l

2 ES

0

L

and p

r

2 ES

R

, will be p

l

. In order to maintain the

number of input places for each transition of the participating components, the

function � is de�ned as one-to-one, i.e. jES

0

L

j = jES

0

R

j where ES

0

R

is the range of

the function �. The fused place will inherit the arcs of the places associated with

it. The competing parallelism can be de�ned over a single component provided

that the range of the function � does not intersect with its domain, that is a

place is not fused with itself, and that places with common input and/or output

transitions are not fused, to avoid parallel arcs.

As we have said we are considering that the places being fused have the same

colour domain. We could however, relax this condition by saying that their colour

domains have only to have the same dimension, i.e. the same number of colour

sets participating. With this we could create new colour classes and rede�ne the

existing colour classes as static subclasses of the newly created ones. The creation

of static sub-classes would require the de�nition of predicates on those transitions

for which the fused place is now input. These predicates would restrict the type

of tokens that a transition can extract from the fused place to those with colour

set equal to the original input place of the transition.

Formally the cSWN S resulting from the independent parallel composition of

two cSWNs, LjR, is de�ned as:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

� P

S

= P

L

[P

R

; ES

S

= ES

L

[ES

R

; FS

S

= FS

L

[FS

R

;

18

Independent

f

1

f

2

P

1

m

m

T

1

T

2

f

4

f

3

P

3

P

4

C

4

C

3

C

2

P

2

C

1

P

1

m

f

1

f

2

T

1

T

2

P

2

f

4

f

3

C

3

C

4

P

4

C

1

Competition C

1

= C

2

Figure 4: Parallel composition of SWN components

� T

S

= T

L

[T

R

; ST

S

= ST

L

[ST

R

;

� C

S

= C

L

[C

R

;

� W

�

S

= W

�

L

[W

�

R

;

� W

+

S

= W

+

L

[W

+

R

;

� W

h

S

= W

h

L

[W

h

R

;

� 8t 2 T

S

:

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� � : T ! N the priority function;

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� MP

S

=MP

L

+MP

R

;

� �, function that associates a weight to each transition.

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

Formally the cSWN S resulting from the competing parallel composition of

two cSWNs, Lj

c

R, is de�ned as:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

19

� P

S

= P

L

[P

R

�ES

0

R

, where ES

0

R

is the range of �(ES

0

L

). FS

S

= FS

L

[FS

R

and ES

S

= ES

L

[ES

R

� ES

0

R

; jES

0

L

j = jES

0

R

j;

� T

S

= T

L

[T

R

; ST

S

= ST

L

[ST

R

;

� C

S

= C

L

[C

R

; 8p

l

2 ES

0

L

: C

S

(p

l

) = C

L

(p

l

);

� W

�

S

= W

�

L

[W

�

R

� fW

�

R

(p

r

; t

j

) j p

r

2 ES

0

R

t

j

2 T

R

g [fW

�

(p

l

; t

j

) j p

l

2

ES

0

L

t

j

2 T

R

such that 9p

k

2 ES

0

R

: �(p

l

) = p

k

p

k

2

�

t

j

g;

� W

+

S

= W

+

L

[W

+

R

� fW

+

R

(p

r

; t

j

) j p

r

2 ES

0

R

t

j

2 T

R

g [fW

+

(p

l

; t

j

) j p

l

2

ES

0

L

t

j

2 T

R

such that 9p

k

2 ES

0

R

: �(p

l

) = p

k

p

k

2 t

�

j

g;

� W

h

S

= W

h

L

[W

h

R

;

� 8t 2 T

S

:

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� � : T ! N the priority function;

�

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

� The initial marking MP

S

is de�ned as:

8p 2 P

S

;MP

S

(p) =

8

<

:

MP

L

(p) +MP

R

(p

k

) p 2 ES

0

L

with �(p) = p

k

MP

L

(p) p 2 P

L

� ES

0

L

MP

R

(p) p 2 P

R

� ES

0

R

� �

S

(t) =

�

�

L

(t) t 2 T

L

�

R

(t) t 2 T

R

In a similar manner we can formally de�ne the resulting cSWN S

0

when

applying the competing parallelism composition over a single component as:

S

0

= hP

S

0

; T

S

0

; C

S

0

; J

S

0

;W

�

S

0

;W

+

S

0

;W

h

S

0

;�

S

0

; �

S

0

;M

P

S

0; �

S

0

i

where,

� P

S

0

= P

S

� P

rng

;where P

rng

is the set of places in the range of the function

�;

� T

S

0

= T

S

;

20

� W

�

S

0

= W

�

S

�fW

�

S

(p

k

; t) j p

k

2 P

rng

^ t 2 T

S

g [fW

�

(p

j

; t) j t 2 T

S

^ p

j

2

P

dom

such that 9p

i

2 P

rng

(�(p

j

) = p

i

^ p

i

2

�

t)g; where p

dom

is the domain

of the function �; 8t 2 T

S

0

: W

�

S

0

(p

j

; t) = W

�

S

(p

i

; t) with p

i

and p

j

as

previously de�ned;

5

� W

+

S

0

= W

+

S

�fW

+

(p

k

; t) j p

k

2 P

rng

^ t 2 T

S

g [fW

+

(p

j

; t) j t 2 T

S

^ p

j

2

P

dom

such that 9p

i

2 P

rng

(�(p

j

) = p

i

^ p

i

2 t

�

)g, 8t 2 T

S

0

: W

+

S

0

(p

j

; t) =

W

+

S

(p

i

; t) with p

i

and p

j

as previously de�ned;

� W

h

S

0

= W

h

S

;

� �

S

= �

S

0

;

� � : T ! N the priority function;

8t 2 T

S

: �

S

0

(t) = �

S

(t)

� The initial marking MP

S

is de�ned as:

8p 2 P

S

;MP

S

(p) =

�

MP

S

(p) +MP

S

(p

k

) p 2 P

dom

with �(p) = p

k

MP

S

(p) p 2 P

L

� P

dom

where P

dom

is the set of places in the domain of �;

� �

S

0

(t) = �

S

(t)

3.4.4 The Closing Operator

When we consider systems with non-terminating behaviour it is necessary for a

model|or sub-components within a model|to be able to feed information back

from a subset of its FS into a subset of its ES. This structure is supported by

the introduction of the closing operator CL. This corresponds to the recursion

operator in SPA. For simplicity the closing operation of a component S

0

is de�ned

over a pairs of places, the �rst place belonging to the FS of the component and

the second to its ES. To fuse a set of places we iteratively apply the closing

operation over a pair of places at a time. We can fuse multiple �nal places with

a single entry place. This is possible because the closing operation preserves

the entry place condition. However, we cannot fuse multiple entry places with

a single �nal transition. In the case that we needed this we would �rst have to

apply the competing parallel composition to the entry places involved and then

apply the closing operation.

A function � de�ned over the component determines the pair of places (p

f

; p

e

)

to be fused, where p

f

2 FS and p

e

2 ES . The operation generates a fusion place

5

Places that are input to a common transition cannot be fused, otherwise we would obtain

parallel arcs

21

p

fe

which will behave both as p

f

and p

e

, inheriting their input and output arcs.

The place p

fe

will not, however, re
ect the �nal place condition of p

f

, i.e. it will

not be presented as a �nal place in the interface of the resulting cSWN . The

place p

e

is completely represented by p

fe

re
ecting its condition of entry place,

i.e. p

fe

will be in the interface of the resulting cSWN as a entry place. We must

notice that p

e

can also be an output place of some transition(s). The colour set

(C(p

fe

)) of the fused place p

fe

will be that of the corresponding entry place in

the relation, C(p

fe

) = C(p

e

). The condition C(p

e

) = C(p

f

) must hold in order

to guarantee that there will be no tokens passed into the place p

fe

when acting

as p

e

, which are not de�ned in its colour set.

Component

C

k

P

f

P

e

C

1

Component

C

1

P

fe

C

k

= C

1

Figure 5: Closing a component

Formally the cSWN S resulting from applyingthe closing operation over a

cSWN S

0

(CL(S

0

)), is de�ned as:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

� P

S

= P

S

0

�fp

e

; p

f

g[fp

fe

g;ES

S

= ES

S

0

�fp

e

g[fp

fe

g; FS

S

= FS

S

0

�fp

f

g;

� T

S

= T

S

0

;

� C

S

= C

S

0

; C

S

(p

fe

) = C

S

0

(p

e

) = C

S

0

(p

f

);

� W

�

S

= W

�

S

0

� fW

�

S

0

(p

e

; t

i

) 2 W

�

S

0

j t

i

2 W

�

S

0

(p

e

; �)g [fW

�

(p

fe

; t

i

) j t

i

2

W

�

S

0

(p

e

; �)g; 8t

i

2 W

�

S

0

(p

e

; �) :W

�

S

(p

fe

; t

i

) =W

�

S

0

(p

e

; t

i

);

� W

+

S

= W

+

S

0

� fW

+

S

0

(p

f

; t

i

) j t

i

2 W

�

S

0

(p

f

; �)g [fW

+

(p

fe

; t

i

) j t

i

2 W

+

S

0

(p

f

; �)g;

8t

i

2 W

+

S

0

(p

f

; �) : W

+

S

(p

fe

; t

i

) = W

+

S

0

(p

f

; t

i

);

� W

h

S

= W

h

S

0

;

� 8t 2 T

S

: �

S

(t) = �

S

0

(t);

22

� 8t 2 T

S

: �

S

(t) = �

S

0

(t);

� The initial marking MP

S

is de�ned as:

8p 2 P

S

;MP

S

(p) =

�

M

P

S

0

(p) p 2 P

S

0

MP

S

(p

e

) p = p

fe

� 8t 2 T

S

: �

S

(t) = �

S

0

(t);

3.4.5 Synchronisation

One of the main advantages that Petri nets have for modelling concurrent sys-

tems is the number and variety of synchronisations that they can represent. In

[20] several types of synchronisations are reviewed. Here we show how to rep-

resent those di�erent types of synchronisation. We will de�ne synchronisation of

components through the synchronisation of their transitions. The asynchronous

synchronisation, in which a sub-component can activate another component by

passing information to it, and then carry on with its own activities, can be seen

as a special case of sequential composition.

The transition of a bSWN can be de�ned as synchronise-able, i.e. available for

synchronisation or visible in the interface of the component, or not. By default

it is de�ned as synchronise-able. Extra transitions added as a consequence of a

composition operation are not visible in the interface of the component. A non-

synchronise-able transition can never be transformed into a synchronise-able one,

but the converse is possible. This occurs when employing multiple transitions

synchronisations (see timed synchronisation and polite communication), where

the synchronisation is not represented by a single transition.

Sub-components do not detect the changes made as a consequence of a syn-

chronisation. They still supply the same information to a transition and receive

the same type of information from it, once it has �red. The functionality of the

subnets involved does not change. This is a characteristic that holds for all types

of synchronisation (or communication).

Untimed Synchronisation, Patient Communication and Impolite Com-

munication The untimed synchronisation, the impolite communication and the

patient communication, produce a structurally similar component when applied to

two sub-components. They are all de�ned as binary operators. Each synchronisa-

tion operation is de�ned over a pair of transitions (T

1

; T

2

) both synchronise-able.

In the case that they both belong to the same component they must be di�erent

transitions (T

1

6= T

2

) and their set of input and output places must not inter-

sect. In all three cases the interaction will only be enabled in the case that both

transitions would have been enabled.

23

r(T

1

) + r(T

2

)

0

min(r(T

1

); r(T

2

)) if Patient Communication

if Impolite Communication

if Untimed Synchronisation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L

f

1

f

2

R

f

3

LsyncRC

1

� C

2

� C

3

� C

4

L

f

1

f

2

f

1

f

3

f

2

f

4

Untimed or Timed Transition

T

1

C

1

� C

2

C

1

� C

2

� C

3

� C

4

T

syn

T

2

f

4

C

3

� C

4

T

syn

R

f

4

f

3

f

r(T

syn

) =

Figure 6: Representation of Untimed Synchronisation, Patient Communication

or Impolite Communication of two components

The untimed synchronisation consists of an instantaneous check-pointing event,

which ensures that both participants share some knowledge of their mutual situ-

ation. From an abstract perspective this can be viewed as the superposition of

two immediate transitions, where the joined transition will also be an immediate

transition.

In the case of patient communication the interaction is assumed to represent a

communication or shared task. The rate of each individual transition represents

the capacity of the component to complete its part of the shared task. The

interaction is completed by both components working together at the rate of the

slower one. Therefore the rate assigned to the joined transition is equal to the

minimum of the rate of T

1

and the rate of T

2

, r(T

syn

) = minfr(T

1

); r(T

2

)g.

The impolite communication consists on the synchronisation of two transitions

each representing a communication event, such that both transitions \transfer

information" at the same time. The �rst to �nish its transfer will terminate

the communication. This means that the duration of the communication will be

24

distributed as the minimum of the individual distributions. Since the individual

transitions are exponentially distributed the interaction will be exponentially

distributed with the sum of the rates r(T

1

) + r(T

2

), where T

1

and T

2

are the

transitions involved in the operation.

These synchronising operations di�er only in the rate assigned to the joined

transition (T

syn

) produced when fusing the synchronising transitions.

Given the following facts:

� Both min and + are associative algebraic operations,

� the untimed operation can be seen as either an impolite communication or

as a patient communication over transitions with rate zero, and

� all three composition operations produce a single joined transition T

syn

we can apply any of these operations over more than two components, joining

pairs of components at a time. In all three cases information about the colour

set of the transitions and their input and output functions is required. This

information can be combined to create new predicates for the joined transition

which will inherit any predicate associated with the transitions T

1

and T

2

. The

resulting joined transition is visible to the environment; T

1

and T

2

no longer exist.

We call this type of synchronisation single transition synchronisations because the

operations generate a single transition as a consequence of the synchronisation of

two transitions.

Formally the cSWN S resulting from applying a single transition synchron-

ising operation to two cSWNs, L 1 RfT

1

; T

2

g (Untimed Synchronisation), L �

RfT

1

; T

2

g (Patient Communication) or L�RfT

1

; T

2

g (Impolite Communication),

is a cSWN de�ned as

6

:

S = hP

S

; T

S

; C

S

; J

S

;W

�

S

;W

+

S

;W

h

S

;�

S

; �

S

;M

P

S

; �

S

i

where,

� P

S

= P

L

[P

R

;

� T

S

= T

L

[T

R

� fT

1

; T

2

g [fT

syn

g; where T

1

and T

2

are the synchronising

transitions of the cSWNs L and R, respectively; T

1

6= T

2

;

� C

S

= C

L

[C

R

;

� W

�

S

= W

�

L

[W

�

R

� fW

�

L

(p

i

; T

1

) j p

i

2

�

T

1

g � fW

�

R

(p

i

; T

2

) j p

i

2

�

T

2

g [

fW

�

(p

i

; T

syn

) j p

i

2 (

�

T

1

[

�

T

2

)g; 8p

i

2

�

T

syn

: [W

�

S

(p

i

; T

syn

) = W

�

L

(p

i

; T

1

) if p

i

2

�

T

1

] or [W

�

(p

i

; T

syn

) = W

�

R

(p

i

; T

2

) if p

i

2

�

T

2

];

6

The same de�nition applies for the case of a single component considering L = R

25

� W

+

S

= W

+

L

[W

+

R

� fW

+

L

(p

i

; T

1

) j p

i

2 T

�

1

g � fW

+

R

(p

i

; T

2

) j p

i

2 T

�

2

g [

fW

+

(p

i

; T

syn

) j p

i

2 (T

�

1

[T

�

2

g; 8p

i

2 T

�

syn

: [W

+

S

(p

i

; T

syn

) = W

+

L

(p

i

; T

1

) if

p

i

2 T

�

1

] or [W

+

S

(p

i

; T

syn

) = W

+

R

(p

i

; T

2

) if p

i

2 T

�

2

];

� W

h

S

= W

h

L

[W

h

R

;

� 8t 2 T

S

:

�

S

(t) =

8

<

:

�

L

(t) t 2 T

L

� fT

1

g

�

R

(t) t 2 T

R

� fT

2

g

�

L

(T

1

) ^ �

R

(T

2

) t = T

syn

� � : T ! N the priority function;

�

S

(t) =

8

<

:

�

L

(t) t 2 T

L

� fT

1

g

�

R

(t) t 2 T

R

� fT

2

g

min(�

L

(T

1

); �

R

(T

2

)) t = T

syn

� The initial marking MP

S

is de�ned as:

8p 2 P

S

;MP

S

(p) =

�

MP

L

(p) p 2 P

L

MP

R

(p) p 2 P

R

� �

S

(t) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

L

(t) t 2 T

L

� fT

1

g

�

R

(t) t 2 T

R

� fT

2

g

0 t = T

syn

�

L

(T

1

) = �

R

(T

2

) = 0

�

L

(T

1

) + �

R

(T

2

) t = T

syn

and the operation is an

Impolite communication

min(�

L

(T

1

); �

R

(T

2

)) t = T

syn

and the operation is a

Patient communication

Timed Synchronisation and Polite Communication The polite commu-

nication and the timed synchronisation can also be considered together because of

the form of the resulting component and because the visibility of the transitions

that are synchronised is subsequently lost. The polite communication represents

the situation where two timed transitions are allowed to communicate in an in-

terleaved manner. In the models proposed we are only considering exponentially

distributed timed transitions, therefore the representation of a Coxian-2 distri-

bution required for polite communication [20], cannot be represented by a single

transition in the net (see Figure 7). For this reason polite communication between

more than two transitions is not allowed. The same applies for the distribution

of the timed synchronisation, which cannot be represented by a single transition

(see Figure 8). Through the timed synchronisation we synchronise two timed

transitions in such a way that the duration of the interaction will be distributed

26

�

L

R

T

2

T

1

C

2

C

4

X

L

T

1

R

X

f

1

C

1

�C

2

C

3

� C

4

f

3

f

4

T

2

f

2

f

3

f

1

f

1

f

3

C

1

C

3

f

4

f

2

f

2

f

4

f

2

f

4

f

3

f

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 7: Polite Communication of two components

as the maximum of the delays of the individual transitions. Unfortunately the

maximum of two exponential distributions is not an exponential distribution. If

it is necessary to synchronise more than two timed transitions by either of these

operations, then they must be all synchronised at once, making the timed syn-

chronisation and the polite communication multiple argument operations. The

resulting transitions will be considered non-synchronise-able for the reasons men-

tioned above.

27

.

.

.

.

.

.

.

.

.

.

.

.

L

R

p =

r(t

2

)

r(T

1

)+r(T

2

)

r(T

1

) + r(T

2

)

f

1

f

3

r(T

2

) � (1� p)

f

1

f

3

f

1

f

3

f

2

f

4

f

4

f

2

f

2

f

4

r(T

1

) � p

Figure 8: Timed Synchronisation of two components

4 Example of a compositional construction of a

SWN model

Let us now study a small example where we illustrate how these operations can

be applied over the sub-components of a model. The example chosen is the well-

known problem of the \Dining Philosophers". There is a group of philosophers

sitting around a table, on which are as many forks as philosophers and a huge

bowl of spaghetti. However, because the spaghetti is very tangled, a philosopher

requires two forks to eat. Therefore, he will have to compete with his neighbours

for the use of his forks. A philosopher thinks for a while, then eats and once he

has �nished eating he returns to thinking.

Before de�ning the basic components of the model we must determine the

basic colour classes. The two types of elements that we must represent are philo-

sophers and forks. As we have said before there is the same number of forks and

philosophers. When a philosopher is thinking his fork is considered to be free

or usable by another philosopher. When a philosopher is eating he uses his fork

28

X

waiting

forks

S

start eat

X + �X

X

THINK

C C

S

thinking

X

think

waiting

X

�X(ph

i

) = ph

[(j+1)modn]

C=fph0,...,phn-1g

EAT

C

C

C

END-EAT

C

C

C

end eat

forks

thinking

eating X

X

X +�X

eating

Figure 9: Basic Components of the Dining Philosophers Model

and that of another philosopher. This re
ects a direct relation between the two

sets of elements, allowing us in this case to represent both philosophers and forks

with a single colour set C = fph

o

; � � � ; ph

n

g, where n is the number of forks and

philosophers.

In Figure 9 the set of basic components for the dining philosophers models

is presented. A philosopher will �rst think (component THINK), once hungry

he will wait until he can eat (placing a token in place waiting). Component

EAT models a philosopher eating, for which it requires a hungry philosopher and

the availability of his forks, when he has both the philosopher can start-eating.

Component END-EAT receives a philosopher who was eating and wants to stop,

this component sends the philosopher back to thinking and releases the forks.

Construction Steps: Given the group of bSWN components presented

in Figure 9, the following steps can be followed in order to obtain the complete

model of the problem (see Figures 10 and 11). To identify instances of places that

have the same name but which originate in di�erent components we will employ

a dot notation. The �rst element corresponds to the name of the component

the place originally belongs to, and the second element the name of the place

(component names are in capital letters and place names in small letters).

� Sequential composition of EAT with END-EAT.

EAT-2 = EAT ;END-EAT with �(EAT:eating) = END-EAT:eating;

� Closing operation over EAT-2.

EATING = CL(EAT-2) with �(END-EAT.forks) = EAT:forks;

29

X

waiting

S

start-eat

X eating X

X+!X

X

X+!X

EAT-2

end-eat

EAT.forks

X

waiting

forks

S

start-eat

X eating

thinking

X

X

X+!X

X+!X

end-eat

EATING

Note: Colour Sets have been obmited because all places have colour set C.

END-EAT.forks

C = fph

0

; :::; ph

n

g

!X(ph

i

) = ph

(j+1)mod(n+1)

thinking

Figure 10: Applying the Compositional operations to form the Dining Philosoph-

ers Model from existing components(A)

� Sequential composition of THINK with EATING.

THINK-EAT = THINK;EATING with �(THINK:waiting) =

EATING:waiting;

� Closing operation over THINK-EAT.

DINING-PHIL = CL(THINK-EAT) with �(EATING.thinking) =

THINK:thinking.

30

THINK-EAT

S

X

think

X

X

waiting

start-eat

X eating X

X

X+!X

end-eat

S

X+!X

forks

THINK.thinking

S

X

think

X

X

waiting

start-eat

X eating

X

X+!X

end-eat

S

X+!X

forks

X

thinking

EATING.thinking

DINING-PHIL

Note: Colour Sets have been obmited because all places have colour set C.

C = fph

0

; :::; ph

n

g

!X(ph

i

) = ph

(j+1)mod(n+1)

Figure 11: Applying the Compositional operations to form the Dining Philosoph-

ers Model from existing components(B)

31

5 Model Construction Guidelines

5.1 Identi�cation of Colour Classes

Colour classes must be de�ned over the system as a whole to avoid ambiguity,

repetitions and mismatches. If we allowed colour classes to be de�ned at the

level of components we would have to support the creation of new colour classes,

of new static sub-classes, and rede�nition of colour functions and of transition

predicates. All this in order to maintain the coherence of the system modelled.

However, we should be able to identify the type of tokens, or elements that

\
ow" through the system, from a beginning, given the system's speci�cation.

In the example of the dining philosophers (Section 4) we could deduce, from the

description of the problem, that philosophers and forks were the types of tokens

to be represented. By further analysis of this types we deduced that one token

type was su�cient.

The static colour classes of the basic colour classes must also be de�ned from

the beginning. The un-coloured class (tokens with no colour) is tacitly considered

to be within the set of the colour classes.

Having de�ned the colour classes we can assign colour domains to the places

and transitions of the components of the system.

5.2 Hierarchy of the Operations

To guide the modeller in how to join a set of components to obtain the results

desired, an ordering amongst the operations has been established. This ordering

was de�ned according to the amount of information that is lost from the original

sub-components when composed|the more information lost the stronger the

operation. Based on this criterion the ordering is the following, from weakest to

strongest:

Independent Parallelism : All the information about the subnets is preserved.

Patient Communication, Impolite Communication and Untimed Syn-

chronisation : These generate new transitions, o�ering their information

in the interface, preserving all information about the ES and FS of the

components involved.

Competing Parallelism : All the information is preserved. The information

about the places in the ES

0

sets is kept through the fusion places.

Choice (pre-selection) : The information about the places in the ES

0

sets is

lost and information is augmented with the choice place.

Closure : Information about the �nal places that participate is lost.

32

Sequence : Information about the ES

0

of the right hand component and on the

FS

0

of the left hand component is lost.

Polite Communication and Timed Synchronisation : These operators add

a considerable number of places and transitions to the resulting component

which are not visible in the resulting interface. The synchronised transitions

are no longer visible after applying the operator.

The main inconvenience of this approach is that by �rst applying the inde-

pendent parallelism operation we eliminate the possibility of applying operations

that are only de�ned over pairs of components. We can also observe that the ap-

plication of a choice operation can inhibit the application of a closing operation,

because the information on the entry places that participate is lost. However, the

contrary does not occur, because the closing operation preserves the ES. This

observations have lead to the following changes in the priorities, now guided by

the amount of information needed from the components in order to apply the op-

erator and the amount of information preserved by each operator. From trongest

to weakest we propose the following ordering:

Closure : Only requires information from one component. Preserves the ES.

Competing Parallelism : Requires information about the ES(s) of the parti-

cipating component(s). All information about the entry places involved in

the operator is kept through the fused places.

Choice (pre-selection) : De�ned on di�erent components. Requires inform-

ation about the ES of each component and loses this information once

composition has occurred.

Sequence : Loses information about part or all of the �nal set of the left com-

ponent and part or all of the entry set of the right hand component.

Patient Communication, Impolite Communication and Untimed Syn-

chronisation : Can be de�ned over a single component or within a com-

ponent or within components. It basically consists of superposition of trans-

itions obtaining a new transition with a rate de�ned according to the syn-

chronisation operator.

Polite Communication and Timed Synchronisation : The only informa-

tion required is about the rate and arc functions of the synchronising trans-

itions.

Independent Parallelism : All the information of the subnets is preserved.

33

5.3 Identifying the bSWNs and cSWNs required to model

a system

This section proposes a series of steps to identify and de�ne the bSWN and cSWN

required to form the desired system model. We will assume that there exists a

set of cSWN components representing commonly occurring functional modules,

from which some can be re-used in the model constructed.

1. Divide the model, according to the system description, into functional mod-

ules.

2. Study the existing cSWN and see if the functional description of any of the

module described coincides with a cSWN in the existing set.

3. For each module with no cSWN associated with it, identify its processes

and analyse each of them in isolation.

4. For each process establish the type of information it requires: from where

should it receive information, and what information it supplies and to

whom.

5. Additionally analyse the timing characteristics of the process, keeping in

mind that only exponentially distributed delays or untimed processes are

supported.

5.4 Identifying how to compose the cSWN to form the

model

Having de�ned the bSWNs and/or identi�ed the cSWNs that model the di�erent

parts of the system, it is necessary to establish how, and in which order, they

should be composed. Notice that after composing a pair of cSWNs we obtain

another cSWN that might have to be composed, therefore the identi�cation of

which operator to apply is an iterative process until we obtain the model desired.

Closing operation : If in a cSWN, L, one or more places of FS

L

need to be

fused to one or more places in ES

L

, i.e. we need to feed information back

from places in FS

L

into places of ES

L

, then a closing operation is required.

The closing operation only fuses a pair of places at a time, therefore if we

want to fuse more than two places, we will have to perform as many closing

operations as the number of places in FS

L

that need to be fused. We cannot

fuse a single �nal place with several entry places, because when a �nal place

participates in the closing operation the fused place is not included in the

resulting FS.

34

Choice and competing parallelism : If we identify a pair of cSWNs, L and

R, with common information requirements, for which they have to compete,

then there are two options for their composition. If which component the

information is assigned to can be determined by a discrete probability dis-

tribution, then we de�ne a choice composition between them. Otherwise,

we apply the competing parallel composition. In the case of the choice

operation, we must determine the probabilistic weight for each component.

The parallel competing operation can be applied over a single component,

but this is not the case for the choice operation.

Sequential composition : If the information o�ered by a place or a set of

places in the FS

L

of a cSWN, L, is required by a place or a set of places in

the ES

R

of a component R, then we should de�ne a sequential composition

over L and R.

Independent parallel composition : If there is a pair of cSWNs, L and R,

for which:

� there is a third cSWN, S, which needs to be sequentially composed by

the left with both L and R, i.e. L;S and R;S, and

� L and R do not require information from each other and do not require

common input information,

then L and R need to be composed by a independent parallel composition.

Synchronisation : The synchronous communication between components must

be de�ned according to the speci�cations of the system. The type of trans-

itions (timed or immediate), the function each represents and the meaning

given to their synchronisation (see Section 3.4.5) will determine which com-

position operation to de�ne. We must keep in mind that the synchronisation

operations work only on a pair of transitions at a time. Synchronisation

can be de�ned between transitions of the same component.

5.5 Composing the system

Identifying which type of composition operations need to be applied is not enough

information to guide the construction of the model. It is also necessary to estab-

lish an order in which these operations should be applied. We propose a set of

guidelines based on the hierarchy suggested on the composition operations.

Given the initial set of components G of a model, we propose the following

iterative sequence of steps for the construction of the overall model of the system.

The operations to be applied over the components are assumed to be de�ned

according to the criteria o�ered in the previous subsection. These steps take

into account that information about the ES, FS and the ST may be lost when

applying certain operations.

35

1. De�ne G

0

= G.

2. If there is a component A 2 G

0

on which a closing operation needs to be

applied, then: apply the operation over A obtaining component A

0

, de�ne

G = G

0

� fAg [fA

0

g and goto 1; otherwise continue.

3. If there is a single component A 2 G

0

on which a parallel competing

operation needs to be applied, then: apply the operation over A with itself

obtaining component A

0

, de�ne G = G

0

�fAg[fA

0

g and goto 1; otherwise

continue.

4. If there is a pair of components B;C 2 G on which a parallel competing

composition needs to be applied, then: apply the operation over B and

C obtaining component D, de�ne G = G

0

� fB;Cg [fDg and goto 1;

otherwise continue.

5. If there is a pair of components B;C 2 G for which a choice composition

has been identi�ed, then: apply the operation over B and C obtaining

componentD, de�neG = G

0

�fB;Cg[fDg and goto 1; otherwise continue.

6. If there is a pair of components B;C 2 G on which an independent

parallel composition needs to be applied, then: apply the operation over

B and C obtaining component D, de�ne G = G

0

�fB;Cg[fDg and goto

1; otherwise continue.

7. Order the set of pairs of components in G, that need to be composed by

a sequential composition, according to the number of places in the ES

of the right-hand component with initial marking di�erent from zero. We

consider parametric markings with values not assigned as di�erent from

zero. If the set is not empty, then take the pair (L

i

; R

i

) with the lowest

count and apply the operation to them obtaining component D, de�ne

G = G

0

� fL

i

; R

i

g [fDg and goto 1; otherwise continue.

8. If there is a single component A 2 G

0

on which a patient communic-

ation, an impolite communication or an untimed synchronisation

operation needs to be applied, then: apply the operation over A with itself

obtaining component A

0

, de�ne G = G

0

�fAg[fA

0

g and goto 1; otherwise

continue.

9. If there is a pair of components B;C 2 G for which a patient communic-

ation, and impolite communication or an untimed synchronisation

operation needs to be applied, then: apply the operation over B and C ob-

taining component D, de�ne G = G

0

�fB;Cg[fDg and goto 1; otherwise

continue.

36

10. If there is a single component A 2 G

0

on which a polite communication

or a timed synchronisation operation needs to be applied, then: apply

the operation over A with itself obtaining component A

0

, de�ne G = G

0

�

fAg [fA

0

g and goto 1; otherwise continue.

11. If there is a pair of components B;C 2 G for which a polite commu-

nication or a timed synchronisation operation needs to be applied,

then: apply the operation over B and C obtaining component D, de�ne

G = G

0

� fB;Cg [fDg and goto 1; otherwise continue.

12. Compose all remaining components in G

0

with the use of independent

parallel composition in an associative manner. The resulting component

constitutes the �nal model.

5.6 Model of a Multiprocessor Architecture

We will apply the guidelines described to the example of a Multiprocessor sys-

tem presented in [21], and later studied in [12] for the application of the SWN

formalism (see Figure 12).

PM1P1 CM1

GB

LBnPB1

Pn PMn CMn

PBnLB1

Figure 12: The multiprocessor architecture been studied

The multiprocessor architecture is composed of a group of processors (p

1

; :::; p

n

).

Each processor p

i

is associated with a local memory composed of two sections,

a private memory (PM) and a common memory (CM). The PM can only be

accessed by the corresponding processor through its private bus (PB). The CM

of a processor p

i

(CM

i

) is accessible to all processors in the system. The as-

sociated processor accesses it through its PB together with its local bus (LB).

Other processors must access it by using the global bus (GB) plus the LB of the

destination CM module. It is assumed that the external access requests to CM

modules have priority over the local CM accesses and cause their preemption.

37

Let us �rst analyse the colour classes of tokens of the system to be mod-

elled. The elements that need to access the di�erent components of the system

are processors. These constitute our �rst colour class. We do not distinguish

among di�erent types of processors, therefore we do not de�ne any static sub-

class over this class. Each processor has an associated local common memory,

therefore the same colour class (processors) can be used in order to identify the

common memory block that a certain processor wants to access. The same de-

duction applies for the local buses. The global bus is unique and can therefore

be represented by a un-coloured token. As we have said, the un-coloured tokens

are considered to be tacitly included in the de�nition of the basic colour classes,

therefore our set of basic colour classes C is de�ned as:

C = fProcg where Proc = fp

1

; � � � ; p

n

g

In order to create the SWN model we identify the functions involved in the

system:

1. Generate memory request

2. Access PM

3. Request local CM module access

4. Request remote CM module access

5. Access local CM module through local LB

6. Request GB for remote CM access

7. Access remote CM module through remote LB

Let us now analyse the requirements and results of each of these functions to

de�ne the bSWNs of the model:

1. We will assume that a processor consumes some time processing its data

(it is active) and then generates a memory request. This is represented by

a timed transition. As input it has the active processors and will generate

as output a memory request (see Figure 13.a).

2. As stated in the problem description a processor that wants to access its

private memory can directly do it through the use of its PB. Therefore

the only input required for this function is a requirement from the local

processor to access the PM . The output of this function would be the

processor which is now free to process further memory requirements. As

there is only one private memory module per processor, and only the as-

sociated processor can access it, the identi�er of the processor also acts as

38

the identi�er of the PM module requested (see Figure 13.b). The transition

associated with this process is timed, where the delay represents the time

that the processor consumes accessing its PM .

3. If a processor p

j

wants to access the CM module i (CM

i

), then if j = i, i.e. it

wants to access the local module, it should require access to its LB (LB

j

).

This is accomplished by de�ning a immediate transition with predicate

j = i, that has as input a place with processors that require a CM module,

and produces as output a request to access the local CM module, i.e. tokens

of the type hi; ji where j = i (see Figure 13.c).

4. A processor may also request a remote CM module access. In order to

generate this request, the process needs as input a processor that wants to

access a CM and will generate a request for an external CM access . This is

accomplished by adding the predicate j 6= i to the transition associated with

the process, where j is the identi�er of the processor making the request

and i is the identi�er of the CM module it wants to access. As this is a

decision process the transition representing it has zero delay (immediate

transition). The output of the process is a request for a remote CM access

(see Figure 13.d).

5. A processor can access its local CM module if it has requested it and

if its LB is available. To check these two conditions this process has as

input. The place where requests for all LB accesses are located and the

place where we have information about all the LBs available. In order to

verify that the bus requested is available we add the predicate j = i to

the transition associated with this process, where j is the identi�er of the

requesting processor and i represents both the CM requested and the LB

required. After the processor operates over its local memory, represented by

a timed transition (LocalLB, see Figure 13.e), it frees its LB and returns

to active, where it can request further memory access.

6. If a processor p

j

is requesting a remote CM access, then it must �rst ac-

quire the system's GB. The access to the GB is controlled by a queue, if

the resource is available it grants it immediately to a requesting processor,

otherwise the processor has to wait for the GB to become available. There-

fore the bSWN that represents the queue for access of the GB, has as input

a place with tokens representing requests for remote CM access and a place

where the tokens represent the availability of the GB (place GB in Figure

13.f). The queueing discipline employed will depend on how we determine

which of the instantiations of the transition of the bSWN will �re, i.e. in

which order do we evaluate the the instantiations of the transition with

the elements of the colour class Proc. We will assume that this is done at

39

random. If the GB is available the transition will �re, generating as output

a request for the local bus LB of the remote CM module.

7. Once a processor has been granted access to the LB of a remote CM

module, then it can execute its remote CM operation. This is represented

by a timed transition, whose delay re
ects the amount of time that the

processor takes in processing its memory requirements. As input it needs

a remote CM request for which the access to the associated LB has been

granted. Once the processor has performed its memory access operation it

can then liberate the GB (through place GB, see Figure 13.g), free the LB

bus associated with the remote CM module accessed and and returns to

active, where it can request further memory access.

8. In order to re
ect the preemption property of the remote CM requests over

the local CM requests, we incorporate a bSWN not directly associated with

any of the functions previously described. This process is represented as

an immediate transition, so that when a request of access to a LB from a

remote processor arrives this will be processed with priority over the local

processor's request. To identify that the request is remote the transition

associated with this bSWN has the predicate i 6= j. The inputs of the

transition are the local buses and information about which processor is

requesting access and to which CM module (see Figure 13.h).

Once we have identi�ed the bSWNs and/or cSWNs that participate in the sys-

temmodelled, we can proceed to compose them following the guidelines described

in Sections 5.4 and 5.5.

Based on the bSWNs presented in Figure 13, we execute the following steps

to obtain the model of the Multiprocessor System in a compositional manner.

To distinguish two places which originally have the same name, we use a dot

notation, pre�xing to the name of each of the places involved, the name of the

component to which the place belongs to. We do not talk about a renaming

operation because it is not de�ned as such, on the contrary it is considered as an

\automatic" operation, which requires no intervention from the modeller.

1. A = CL(d) with �(LBs

0

) = LBs. Perform a close operation over compon-

ent d. See Figure 14.A.

2. B = Aj

c

g with �(A:LBs) = g:LBs and �(A:ReqLB) = g:ReqLB. Com-

pose components A and g by a competing parallelism operation. See Figure

14.B.

3. C = bj

c

c with �(b:CMacc) = c:CMacc. Compose components b and c by

a competing parallelism operation. See Figure 14.C.

40

Proc Proc

reqPM

X X

PMaccess

active

Local CM

<X,Y>

X=Y ReqLB

XProc

CMacc

Procx Proc

Proc
X X

active

Gen_req
Proc

mem-req

S

<X,Y>

ReqGB

GB

<X,Y>
UseGB Proc x Proc

Proc x Proc

ReqLB

<X,Y>

X

ReqLB

X<>Y

LBremote
<X,Y>

accessLB

Proc x Proc

Proc x Proc

LBs

Proc

a b

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

Proc x Proc
X

S

<X,Y>

X
X=Y

ReqLB
LocalLB

X

Y Proc

Proc x Proc

LBs LBs’

Proc Proc

active

accessLB

Y Proc

GB

<X,Y>

remoteLB
Proc x Proc

LBs
Proc

X

active

S

c d

e

f

g

h

Figure 13: Basic SWN components of the Multiprocessor model

4. D = a+Cf1=3; 2=3g with Choice(a) = reqPM and Choice(C) = CMacc.

De�ne a choice operation over components a and C. The weight values

assigned are to give equal probability of occurrence to all types of memory

request. We rename the choice place mem-req. See Figure 14.D.

5. E = h;D with �(h.mem-req) = D.mem-req. Sequentially compose compon-

ent h with component D. Place D:active is renamed active

0

in component

E. See Figure 14.E.

6. F = CL(E) with �(active

0

) = active. Perform a close operation over

component D. See Figure 15.F.

7. G = F ; e with �(F:ReqGB) = e:ReqGB. Sequentially compose component

E with component e. Place e:ReqLB is renamed as ReqLB

0

in component

41

G. See Figure 15.G.

8. H = G;B with �(G:ReqLB) = B:ReqLB and �(G:ReqLB

0

) = B:ReqLB.

Sequentially compose component F with component B, by de�ning � :

fG:ReqLB;G:ReqLB

0

g ! B:ReqLB. Place B:active is renamed active

0

in

component H. See Figure 16.H .

9. I = CL(H) with �(active

0

) = active. Perform a close operation over com-

ponent d. See Figure 16.I.

10. J = I; f with �(I:accessLB) = f:accessLB. Sequentially compose com-

ponent H with component f , by de�ning �(I:accessLB) = f:accessLB.

Places f:GB, f:active and f:LBs are renamed to GB

0

, active

0

and LBs

0

,

respectively in component J . See Figure 17.J.

11. For the sake of space we have combined the following three operations as

one step from component J to the �nal model presented as component

FINAL (See Figure 17).

� K = CL(J) with �(active

0

) = active.

� L = CL(K) with �(GB

0

) = GB.

� FINAL = CL(L) with �(LBs

0

) = LBs.

Let us now compare the cSWN model obtained with the one presented in [22]

(See Figure 18). First of all it is important to point out a small di�erence in

the interpretation of the system. In [22], they consider a processor to be active

executing in its PM and after some time to generate a request to access a memory

module (either its PM , its local CM or a remote CM). If the request is for the

PM then it is immediately granted and the processor returns to its active status

executing in its PM . The PM access and the memory request are joined in a

single timed transition. In the model presented in this report, we separate these

functions into two timed transitions. One, mem-req, representing the period in

which the processor operates over the data and generates a memory request; and

another, PMaccess, to represent the time that the processor consumes accessing

its PM .

Leaving aside this interpretation di�erence, we �nd that the models obtained

are very similar. We can observe that in our model there are more immediate

transitions than in the model presented in [22]. One of the reasons behind this is

the fact that the choice operation (as it has been de�ned) only allows us to make

a choice between two cSWNs at a time. Therefore, the selection of which type

of request is generated (PM , local CM or remote CM), is made in two steps:

�rst we distinguish between PM or CM , and then distinguish between local and

remoteCM . This type of drawback can always be overcome by the multiplication

of the weights of the immediate transitions within a tree of choice operations. In

42

this case we could eliminate transition CMreq and the place CMacc, add an arc

from the place mem-req to the transition LocalCM, and another to the transition

RemoteCM, and assign to LocalCM and RemoteCM weight 1/3.

Although the model obtained can be considered as \naive" with respect to the

number of immediate transitions employed, it clearly re
ects the functional beha-

viour of the system. The functions of the system are modelled as basic compon-

ents. The combination of functions can be created by the adequate composition

of the components re
ecting these functions. Under a state-based construction

approach, composition does not come about in a straightforward manner. Trying

to see a component as representing a set of states or sub-states, to then compose

it with other components in order to form more complex states, does not logic-

ally or easily emerge from the analysis of a system. In general the creation of

Petri net models depends very much on the abilities of the modeller. We propose

a series of steps that guide the modeller in the construction process, in order

to create a simple but understandable model. We can obtain a more compact

model by applying net reduction methods, such as the elimination of unnecessary

immediate transitions.

43

X<>Y

LBremote
<X,Y>

accessLB

X
X=Y

LocalLB

freeProc

Y

X

Proc

LBs

ReqLB

X

<X,Y>

<X,Y>Proc x Proc

Proc x Proc
Proc

Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

X

Proc

CMacc

X

Proc x Proc

Proc x Proc

<X,Y>

X
X=Y

ReqLB
LocalLB

freeProc

Y Proc

X

LBs

Proc

Proc x Proc

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Proc

active’

Proc

mem-req

Proc

S

active

X X

E

B

C

A

D

S

Proc

PMreq

X

X

X

Proc

reqPM

X

PMaccess

Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

CMreq

Proc

CMacc

X

X

X

Proc x Proc

Proc x Proc

Proc
X

active

mem-req

Gen-req

Figure 14: Creating the Multiprocessor model in a compositional manner (A)

44

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X

GB

<X,Y>
UseGB<X,Y>

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X

Proc x Proc

ReqLB’

F

G

F
i
g
u
r
e
1
5
:
C
r
e
a
t
i
n
g
t
h
e
M
u
l
t
i
p
r
o
c
e
s
s
o
r
m
o
d
e
l
i
n
a
c
o
m
p
o
s
i
t
i
o
n
a
l
m
a
n
n
e
r
(
B
)

4
5

X<>Y

LBremote
<X,Y>

accessLB

X
X=Y

LocalLB
Y

X

LBs X

<X,Y>

<X,Y>Proc x Proc

Proc x Proc

GB

UseGB<X,Y>

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X <X,Y>

ReqLB

<X,Y>

Proc

active’

X<>Y

LBremote
<X,Y>

accessLB

X
X=Y

LocalLB
Y

X

LBs X

<X,Y>

<X,Y>Proc x Proc

Proc x Proc

GB

UseGB<X,Y>

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X <X,Y>

ReqLB

<X,Y>

H

I

F
i
g
u
r
e
1
6
:
C
r
e
a
t
i
n
g
t
h
e
M
u
l
t
i
p
r
o
c
e
s
s
o
r
m
o
d
e
l
i
n
a
c
o
m
p
o
s
i
t
i
o
n
a
l
m
a
n
n
e
r
(
C
)

4
6

X<>Y

LBremote
<X,Y>

accessLB

X
X=Y

LocalLB
Y

X

LBs X

<X,Y>

<X,Y>Proc x Proc

Proc x Proc

GB

UseGB<X,Y>

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X <X,Y>

ReqLB

<X,Y>

Y

remoteLB

X

X<>Y

LBremote
<X,Y>

accessLB

X
X=Y

LocalLB
Y

X

LBs X

<X,Y>

<X,Y>Proc x Proc

Proc x Proc

GB

UseGB<X,Y>

PMreq

X

X

X

Proc

reqPM

X X

PMaccess

Proc
Local CM

<X,Y>

X=Y ReqLB

X<>Y

RemoteCM

<X,Y>

ReqGB

Proc

CMacc

X

X

X

CMreq

Proc x Proc

Proc x Proc

Gen-req

mem-req

S
X X <X,Y>

ReqLB

<X,Y>

Y

remoteLB

X

J

Proc

GB

LBs

Proc

active’

FINAL

F
i
g
u
r
e
1
7
:
C
r
e
a
t
i
n
g
t
h
e
M
u
l
t
i
p
r
o
c
e
s
s
o
r
m
o
d
e
l
i
n
a
c
o
m
p
o
s
i
t
i
o
n
a
l
m
a
n
n
e
r
(
D
)

4
7

Run

P

P

X X X <X,Y> <X,Y> <X,Y> <X,Y>

X

Y Y

11

X

X

X

XX

XXX

P
P,P P,P

SelectMem Queue

req_ext_acc

[X<>Y]

begin_ext_acc

Memory

ExtMemAcc

end_ext_acc

ExtBus

P:Processors

req_priv_mem

begin_own_acc

P

P

mem_req

OwnMemAcc

S

S

end_own_acc

S

Queue

P
<X,Y> <X,Y>

Memory

P

P,P

begin_own_acc

OwnMemAcc

S

ExtMemAcc

X1

[X<>Y]

begin_ext_acc

Y Y

Active

X

X

X

XX

X

P

P

X X X

1

end_ext_acc

end_own_acc

a) An intuitive model.

b) A more compact WN model

Figure 18: Multiprocessor model presented by Chiola et al.

48

6 Conclusions and Future Work

In this report we have de�ned a set of composition operations for the creation

of SWN models from SWN components. The operations presented di�er from

existing compositional PN formalisms: they preserve the functional structure of

the model and support several types of communication between components. In

this way we support the modelling of distributed and parallel systems where both

synchronous and asynchronous communication is required. SWN have been used

because of the intrinsic lumping facilities that the formalism o�ers.

We suggest a series of steps to identify and de�ne the basic SWNs in the

system modelled. Once all compose-able SWNs (cSWN) have been identi�ed we

suggest a series of guidelines to determine the composition operations that have

to be used to correctly compose the cSWNs. However, determining which type

of composition operations need to be applied is not enough information to guide

the construction of the model. It is also necessary to establish an order in which

these operations should be applied. A set of guidelines for the compositional con-

struction of SWN models have been suggested. This set is guided by an hierarchy

de�ned on the compositional operations based on the amount of information re-

quired/lost and/or preserved from each component by each operation.

Other work now in progress is investigating the structural properties preserved

by each compositional operation. In this way we will be able to derive knowledge

of the structural properties of a component from the structural properties of its

sub-components. We derive the incidence matrix of a cSWN from the incidence

matrix of its sub-components and by knowing the compositional operation em-

ployed. Knowing how the incidence matrix can be constructed, we study how

from the generative family of positive
ows of the sub-components, we can derive

the generative family of the resulting cSWN.

References

[1] Milner R. Communication and Concurrency. Prentice-Hall, 1989.

[2] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[3] J. Kramer, J. Magee, and A. Finkelstein. A Constructive Approach to the

Design of Distributed Systems. In Proceedings of the 10th International

Conference on Distributed Computing Systems, Paris, France, May 1990.

IEEE Computer Society Press.

[4] Y. Souissi and G. Memmi. Composition of nets via a communication me-

dium. Advances in Petri Nets 1990, LNCS 483:457{470, 1990.

[5] A. Valmari. Compositional State Space Generation. Advances in Petri Nets

1993, LNCS 674:427{457, 1993.

49

[6] W. Volger. Failures Semantics and deadlocking of Modular Petri nets. Acta

Informatica, 26:333{348, 1989.

[7] C. Sibertin-Blanc. A Client-Server Protocol for the Composition of Petri

Nets. In Proceedings of the 14th International Conference on Applica-

tions and Theory of Petri Nets, pages 377{396, Illinois, U.S.A., June 1993.

Springer-Verlag.

[8] W. Sanders and J. Meyer. Reduced Base Model Construction Methods for

Stochastic Activity Networks. IEEE Journal on Selected Areas in Commu-

nication, 9:25{36, January 1991.

[9] S. Donatelli. Superposed stochastic automata: a class of stochastic Petri nets

with parallel solution and distributed state space. Performance Evaluation,

18:21{36, 1993.

[10] S. Donatelli. Superposed generalised stochastic Petri nets: de�nition and

e�cient solution. In Proceedings of the 15th International Conference on

Applications and Theory of Petri Nets, volume LNCS 815, Zaragoza, Spain,

June 1994. Springer-Verlag.

[11] P. Buchholz. Aggregation and Reduction Techniques for Hierarchical GC-

SPNs. In Proceedings of the 5th International Workshop on Petri Nets and

Performance Models, Toulouse, France, October 1993. IEEE Computer So-

ciety Press.

[12] G. Chiola, C. Dutheillet, G. Franceschinis, and Haddad S. Stochastic well-

formed coloured nets and multiprocessor modelling applications. High-Level

Petri Nets, Theory and Application, 1991.

[13] J. Hillston. A Compositional Approach to Performance Modelling. PhD

Thesis CST-107-94, Department of Computer Science, University of Edin-

burgh, April 1994.

[14] N. Gotz, U. Herzog, and M. Rettelbach. TIPP - Introduction and application

to protocol performance analysis. Technical report, University of Erlangen,

March 1993.

[15] M. Ribaudo. On the Relationship between Stochastic Petri Nets and

Stochastic Process Algebras. Dottorato di ricerca in informatica, Diparta-

mento di Informatica, Universita di Torino, May 1995.

[16] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modeling with Generalized Stochastic Petri Nets. John Wiley & Sons Ltd.,

1995.

50

[17] K. Jensen. Coloured Petri Nets. Springer-Verlag, 1992.

[18] P. Buchholz. A Hierarchical View of GCSPNs and Its Impact on Qualitative

and Quantitative Analysis. Journal of Parallel and Distributed Computing,

15:207{224, July 1992.

[19] G. Findlow. Obtaining deadlock-Preserving Skeletons for Coloured Nets. In

K. Jensen, editor, Proceedings from the 13th International Conference on

Application and Theory of Petri Nets, pages 173{192, She�eld, UK, June

1992.

[20] J. Hillston. The Nature of Synchronisation. In U. Herzog and M. Rettelbach,

editors, 2nd Workshop on Process Algebras and Performance Modelling, Er-

langen, Germany, 1994.

[21] M. Ajmone Marsan, G. Balbo, and G. Conte. Comparative performance

analysis of single bus multiprocessor architectures. IEEE Transactions on

Computers, C-31(12), December 1982.

[22] G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized

Stochastic Petri Nets: A De�nition at the Net Level and Its Implications.

IEEE Transactions on Software Engineering, 19:89{107, February 1993.

51

