
Synchronizing Arbitrary Processor Groups in

Dynamically Partitioned 2-D Meshes

�

George Chochia, Murray Cole

Department of Computer Science, University of Edinburgh.

e-mail: fgac,micg@dcs.ed.ac.uk

Todd Heywood

IBM PowerParallel Systems

e-mail: theywood@kgn.ibm.com

Abstract

A general purpose synchronization mechanism for a parallel computer

should allow arbitrary, data-dependent, dynamically partitioned groups of

processors to remain internally synchronized, while proceeding asynchron-

ously with respect to other groups. We present an algorithm which can

support such a scheme. The algorithm constructs binary synchronization

trees for the sub-groups, given a group of processors and a f0; 1g label for

each processor, and is valid for any network. We provide a general com-

plexity analysis in terms of operations on the synchronization trees which is

then instantiated with respect to the n�n processor 2D mesh architecture.

We show that the algorithm constructs a synchronization tree for any sub-

group of s processors in O(n log s) parallel communication steps with high

probability. We present lower bounds on achievable performance based on

the mesh indexing scheme used: row/column major indexing schemes re-

quire
(n logn) parallel communication steps in the worst case, whereas

the recursive Hilbert indexing scheme requires
(n

p

logn) parallel commu-

nication steps. Experimental results are given validating the analysis. Our

algorithm has applications in implementations of PRAMs (e.g. conditional

instructions) and of nested data parallelism (or mixed data/task parallel-

ism) on distributed processor networks.

�

Work supported by EPSRC grant GR/J43295

1 Introduction

The PRAM [7] is a well-known, powerful, idealized model of parallel computa-

tion, in which tightly synchronized processors share access to a large common

memory. The H-PRAM [6] is a variant of the standard PRAM which allows arbit-

rary, recursive partitioning of the PRAM (both processors and memory), with a

cost-model which charges communication and synchronization costs in proportion

to the size of each sub-machine, thereby encouraging the algorithm designer to

contrive algorithms in which as much work as possible takes place at lower levels

of the resulting hierarchy, thus reducing overhead while retaining the ease-of-use

features of the PRAM. Correspondingly, the implementer of the model has the

task of devising strategies at the physical level which respect the intended locality

of activity represented by the partitioning into groups.

The work described here was generated by a larger investigation into the prac-

tical details of H-PRAM implementation techniques for two dimensional mesh

architectures. Since the H-PRAM subsumes the PRAM model as a special case,

many of the implementation issues are common to both models, with additional

complications sometimes arising through the added arbitrary partitionability of

the H-PRAM. The problem described and solved in this paper is one such in-

stance.

The problem is that of implementing multiple tightly synchronized sub-groups

of processors, where di�erent sub-groups are asynchronous/independent, which

are created dynamically by partitioning a group of processors based on run-time

data values. Although this is necessary for H-PRAM partitioning, note that it is

also a basic requirement for implementing conditionals in a PRAM programming

language.

Additionally, stripped of its (H-) PRAM motivation, the sub-group synchron-

ization problem is also of interest to a more general class of parallel programming

models mapped to distributed network architectures; one example is that of nes-

ted data parallel languages[3], which are more amenable to producing e�cient

programs for irregular problems than
at data parallelism.

The paper is organized as follows. The remainder of this section gives the

background for the problem. In Section 2 we give bounds on the properties of

binary synchronization trees embedded in 2D meshes with respect to di�erent in-

dexing schemes. In particular, we use path length arguments to show that Hilbert

mesh indexing admits the possibility of a �(n

p

log n) synchronization algorithm,

an improvement on the the
(n log n) lower bound for row-major and snake-

2

like indexing schemes which can be deduced by similar arguments. In Section 3

we present and prove the correctness of the algorithm for \sub-group identi�ca-

tion", where a group of mesh processors is dynamically partitioned into arbitrary

sub-groups, and synchronization trees constructed for the sub-groups. Section 4

contains the complexity analysis of the algorithm. We prove that on a n� n pro-

cessor mesh any sub-group can be identi�ed (synchronized) in O(n log n) parallel

communication steps with high probability. Section 5 presents the results of simu-

lated executions of the algorithm on the 2D mesh. We observe that for contiguous

sub-groups, Hilbert indexing gives rise to signi�cantly better performance than

row-major indexing. Section 6 discusses related work.

1.1 Background

Conventional descriptions of the PRAMmodel in algorithms texts [7] state that the

processors, while free to execute arbitrary and independent sequences of instruc-

tions, are nevertheless synchronized after each such instruction (i.e. in `lock-step'

style). This is a satisfactory description for the purposes of informal algorithm

design and analysis. However, as soon as one attempts to build a conventional

higher level programming model it becomes clear that the semantics of synchron-

ization must be tied to the language constructs themselves (and may, but are not

required to, be tied to lower level hardware synchronization support). The Fork

language [5] and its variants represent the best developed such framework of which

we are aware (our own experiments have been based on extending the concepts

provided by Fork to the H-PRAM).

In Fork, all processors initially belong to the same `group' which means that

they are executing the same sequence of statements, in a tightly synchronized

manner (with synchronization points after each statement, between evaluation of

right hand sides, left hand sides and actual assignment in assignment statements

and so on). Execution of a conditional statement may complicate this scenario. If

the conditional expression evaluates di�erently in di�erent processors (for example

by depending upon processor identi�ers or private data), then two sub-groups are

formed, one for those processors choosing the then branch, the other for those

choosing the else. These groups then execute the statements from their chosen

branch independently, and asynchronously (the processors within a sub-group re-

main synchronous in the usual way). The two sub-groups are eventually recom-

bined and synchronized when both branches of the conditional have terminated.

In the context of a simple PRAM to mesh implementation, in which each physical

3

processor emulates a single PRAM processor, this results in the following problem.

Devise an e�cient scheme which allows arbitrary and dynamically

emerging sub-groups of processors to identify and synchronize them-

selves. The only available information on group composition will be

that each group is a sub-set of an existing group and that the processors

in each group are identi�ed by the common result of an immediately

preceding boolean expression evaluation.

In the H-PRAM context the problem is further complicated by the fact that these

`PRAM conditional' concerns may be occuring within an already partitioned (and

irregularly shaped) sub-area of the mesh. Therefore, our interest is in sub-group

synchronization within arbitrary groups of mesh processors.

It is important to emphasize at this point that the problem of implementing the

H-PRAM speci�c partition is orthogonal to the problem discussed here. The `sub-

group' hierarchies discussed in this paper are artefacts of the PRAM model itself,

and emerge and disappear dynamically within each sub-PRAM (sub-group) of an

H-PRAM. This raises a challenging issue in the area of H-PRAM language design

{ that of nesting partitions within conditionals { for the moment, we hold the

view that H-PRAM partitioning steps should be prohibited while any `conditional'

sub-group structure is in operation, and our method is constructed under this

assumption.

2 Tree synchronization of arbitrary sub-meshes

In this section, we consider the properties of synchronization trees embedded in

2D meshes, producing performance bounds for synchronization based on binary

trees.

Let U denote a set of 2D mesh nodes. Each node is identi�ed by a pair of

Cartesian coordinates (u

x

; u

y

). We denote the row major, column major, snake-

like and Hilbert indexing schemes as I

Y

, where Y = fR;C; S;Hg respectively

(where the subscript is omitted, results apply to any of the indexing schemes). The

�rst three schemes are well-known. For row major, given any pair u; v 2 U such

that I

R

(u) > I

R

(v), then either u

y

> v

y

or (u

y

= v

y

) ^ (u

x

> v

x

). By swapping

x and y, we obtain the column major indexing scheme I

C

. For the snake-like

scheme, I

S

(u) > I

S

(v) i� either u

y

> v

y

or (u

y

= v

y

) ^ (u

x

> v

x

) ^ (u

y

is even) or

(u

y

= v

y

) ^ (u

x

< v

x

) ^ (u

y

is odd).

4

The Hilbert indexing scheme is relatively new (e.g. see [8] and [4], where the

name \Peano indexing" is used, inaccurately). I

H

can be de�ned recursively for

any 2

q

� 2

q

; q > 0 mesh by the process shown in Figure 1.

0

1 2

3

0 1

3 12

14

2� 2 mesh 4 � 4 mesh

2 13

87

65 9 10

114

15

Figure 1: The recursive rule for Hilbert indexing scheme. Each node of the mesh

is shown as a square.

We will use the following fact later. Here, the Manhattan distance (later

distance) between two nodes u; v of a mesh is d(u; v) = ju

x

� v

x

j+ ju

y

� v

y

j.

Fact 1 [4, Theorem 1]. For any u; v 2 U within a mesh

d(u; v) < 3

q

jI

H

(u)� I

H

(v)j :

We now consider embedding synchronization trees in the mesh. Given a tree

with a set of vertices T , jU j = jT j, introduce a bijective mapping on the mesh

nodes and tree vertices: U $ T . For any u 2 U and v 2 T such that v $ u,

put I(u) = I(v). In the following we use \almost balanced" binary trees, where

all intermediate vertices have two children except for some which are parents of

leaf vertices. When tree edges are directed from the leaves to the root we have

a combining tree, and when from root to leaves a broadcasting tree. Given a

mapping U $ T , the synchronization of the mesh nodes can be performed in two

passes, �rst on a combining tree and then on a broadcasting tree:

1. wait for packets from the children, then send a packet to the parent vertex;

2. receive a packet from the parent, then broadcast it to the children.

Any sub-group of U can be synchronized via a binary tree. The constant ver-

tex degree translates to a constant space requirement for storing parent/children

information.

The mapping U

0

$ T , where U

0

� U and jU

0

j = jT j, is de�ned as follows.

Let rank I(v); v 2 U

0

be the rank of v with respect to indexing scheme I. Select

5

u 2 U

0

, such that rank I(u) = d(max

v

rank I(v))=2e; v 2 U

0

. Split U

0

into two

subsets U

0

<

and U

0

>

of nodes with ranks > rank I(u) and < rank I(u) respectively.

Find left child in U

0

<

and right child in U

0

>

applying the described procedure

recursively. Choose the node found at the �rst step as a root.

Assertion 1 Given a sub-group U

0

� U , s = jU

0

j and the rank r = [0; s) of a

vertex, the ranks of the vertex's children and parent in T , U

0

$ T , may be found

in O(log s) computational steps.

Proof For any two indexing schemes I and I

0

where I(v) < I(u) i� I

0

(v) < I

0

(u)

for all distinct v; u 2 U

0

, the mapping procedure �nds the same children for a

given parent. De�ne I

0

(u) = rank I(u), which introduces a total ordering on U

0

.

Applying the mapping procedure with respect to I

0

we �nd a vertex with rank r in

O(log s) computational steps. O(1) additional steps �nd the ranks of its children

and its parent.

We will use the following properties of the mapping U

0

! T .

Lemma 1 For any u; v 2 T , s = jT j such that u is a parent of v, and there are

k � 0 edges between u and the root,

jrank I(u)� rank I(v)j �

�

s

2

k+2

�

:

Proof Consider the case k = 0. Let u, v

L

and v

R

be the root and its left and right

children, with ranks a; a

L

; a

R

respectively. Then a = d(s�1)=2e, a

L

= d(a�1)=2e

and a

R

= a + d(s � a)=2e. Consider the di�erences ja � a

L

j and ja � a

R

j . If a

is even then ja � a

L

j = a=2 and ja� a

R

j = d(s � a)=2e, which is a=2 if s is even

and a=2 + 1 if s is odd. Indeed, if s is even a = s=2, ja� a

R

j = da=2e = a=2; if

s is odd a = (s � 1)=2, ja� a

R

j = d(a+ 1)=2e = a=2 + 1. The right hand side is

ds=4e = da=2e = a=2 if s is even and is ds=4e = d(2 a+1)=4e = a=2+1 if s is odd,

therefore the inequality holds if a is even. If a is odd then ja � a

L

j = (a + 1)=2

and ja� a

R

j = d(s� 1)=2� (a� 1)=2e = d(s� 1)=2e � (a� 1)=2 = (a+1)=2. The

right hand is ds=4e � da=2e = (a + 1)=2 and the inequality holds again. Hence

the inequality holds for any s if k = 0. The size of jU

<

j and jU

>

j is at most bs=2c

at step k = 1. At step k � 1 the size of these subsets s

k

is at most s

k

� bs=2

k

c.

Hence at step k the right hand is ds

k

=4e. Since the inequality holds for any s if

k = 0, it holds for s = s

k

. Applying ds

k

=4e � ds=2

k+2

e we conclude that Lemma

holds at step k � 1.

6

Assertion 2 Vertices in the left (right) sub-tree rooted by u have smaller (larger)

ranks than u. For any vertex u in the left (right) sub-tree there exists vertex v,

such that rank I(u)� rank I(v) = 1, (rank I(v)� rank I(u) = 1).

Proof From the de�nition of the mapping procedure it follows that, for any ver-

tex u, its left and right children are in subsets U

0

<

and U

0

>

respectively. If

non-empty, U

0

<

contains node v with maximal index less than I(u). Therefore

rank I(u)� rank I(v) = 1. If non-empty, U

0

>

contains node v with minimal index

greater than I(u). Therefore rank I(v)� rank I(u) = 1.

The number of links a packet may cross on its way from a leaf node to the

root on a synchronization tree varies, depending on the indexing scheme and the

sub-group U

0

� U . The following theorem shows that the maximal number of

links for the Hilbert indexing scheme is �(n

p

log n).

Theorem 1 For a synchronization scheme based on a binary tree mapped to the

Hilbert indexed mesh of size n

2

by the procedure described above, there exists a sub-

group of nodes such that some synchronization packet crosses at least

n

p

2

p

log n (1+

o(1)) links. No packet crosses more than 3

p

2 n

p

log n links.

Proof We start by proving the �rst statement. Split the mesh into sub-meshes

of size w = 4

q

; 0 � q � log n. Split each sub-mesh into four equal squares and

mark the lower left one. De�ne S as the set of marked squares. Assign a rank

to each square as they appear when moving along the Hilbert curve in increasing

index order. For any u; v 2 S; u 6= v the distance between any pair of nodes, one

from square u and the other from square v, is �

p

w=2.

We construct a sub-group in the following way. Mark one node from the square

with rank zero, two nodes from the square with rank one, and so on doubling the

number of nodes until either (a) the number of marked nodes in a square is equal

to w=4 or (b) we run out of squares. Suppose q is small enough that (a) is the

case. Then the sub-group contains w=2 � 1 elements. De�ne the set of marked

nodes as the sub-group which is to be synchronized. The sub-group is mapped to

a binary tree via the procedure described above. As a result we obtain a balanced

binary tree of depth logw � 2. From the recursive de�nition of I

H

it can be seen

that the nodes of v 2 S are consecutively numbered. Combining this observation

with Assertion 2, we may conclude that in any square of rank k; k < logw � 2,

there exists a node having a parent in the square with rank k + 1. Therefore, a

synchronization packet generated by the marked node from the square with rank

7

zero will need to cross at least (logw � 2) �

p

w=2 links. For our construction

to be valid we need to have at least logw � 2 elements in S. This is satis�ed if

n

2

=w � logw � 2, which (asymptotically) translates to

w =

n

2

log n� 2

(1 + o(1)) :

This value gives us the result that the packet generated in the square with rank

zero crosses at least

n

p

2

p

log n (1 + o(1)) links, thus proving the lower bound on

the maximal number of links to be crossed.

We now proceed to the second statement in the theorem, the upper bound.

Suppose a synchronization tree has at most k edges from some leaf to the root.

Consider nodes v

i

2 U; i = 1; :::; k + 1, on the path from that leaf to the root.

The number of links l crossed along the path is

P

d(v

i+1

; v

i

). De�ning x

i

=

jI

H

(v

i+1

)� I

H

(v

i

)j; i = 1; :::; k and applying Fact 1 we �nd the upper bound on l

via

l � 3

k

X

i=1

p

x

i

k

X

i=1

x

i

� n

2

;

from which we obtain

l = 3

0

@

k

X

i;j=1

p

x

i

p

x

j

1

A

1=2

� 3

0

@

k

X

i;j=1

(x

i

+ x

j

)=2

1

A

1=2

� 3

p

k n :

At the second step here, we have applied

p

x

i

x

j

� (x

i

+x

j

)=2. As we have at most

n

2

nodes, k � 2 log n. This gives us the upper bound on the maximal number of

links, 3

p

2 n

p

log n.

We now show that if the nodes within a sub-group are at the same stride r

from each other, i.e. jI

H

(v

i+1

)�I

H

(v

i

)j = r; i = 1; :::; jU

0

j for all v

i+1

; v

i

2 U

0

, such

that rank I(v

i+1

) = rank I(v

i

)+1, then any packet crosses at most O(n) links. We

call this set of nodes a sub-group of equidistant nodes.

Theorem 2 Given a sub-group of s equidistant nodes on a Hilbert indexed mesh;

if the stride r = 1 then no packet crosses more than

3�

p

s+O(log s)

8

links; if the stride r > 1 then no packet crosses more than

3n

�

�+O((log s)=

p

s� 1)

�

links, where � = (2 +

p

2)=2.

Proof Consider case r = 1 �rst. The number of edges in T from any leaf to

the root is at most blog sc. Let v

i

; i = 0; :::; blog sc � 1 be a sequence of nodes

maximizing the number of links l =

P

d(v

i+1

; v

i

). As the nodes are consecutively

numbered, we have jI

H

(v

i+1

) � I

H

(v

i

)j = jrank I

H

(v

i+1

) � rank I

H

(v

i

)j. By using

Fact 1, and Lemma 1 we can bound l as

l � 3

blog sc�1

X

i=0

s

�

s

2

i+2

�

� 3

0

@

blog sc�1

X

i=0

r

s

2

i+2

+ blog sc

1

A

� 3�

p

s+O(log s) :

In this case the number of links crossed by any packet is at most O(

p

s).

Now consider Case r > 1. Here we have jI

H

(v

i+1

)�I

H

(v

i

)j = r jrank I

H

(v

i+1

)�

rank I

H

(v

i

)j and r (s�1) � n

2

, from which we obtain

p

r �

n

p

s�1

. Applying Fact 1

and Lemma 1 gives

l � 3

blog sc�1

X

i=0

s

r

�

s

2

i+2

�

� 3n

�

�+O((log s)=

p

s� 1)

�

:

Finally, we show that the structure of the other indexing schemes result in a

worse lower bound on acievable performance (when compared to the result from

theorem 1).

Theorem 3 For a synchronization scheme based on a binary tree mapped to the

row major or snake indexed mesh of size n

2

by the procedure described above, then

there exists a sub-group of nodes such that some synchronization packet crosses

(n log n) links.

Proof First, consider the row-major indexing scheme (and by simple symmetry,

the column major scheme). Let the number of nodes in a sub-group be 2

k

� 1,

n=2 � 2

k

� 1 � n. The mapping procedure described above constructs a balanced

binary synchronization tree. Mark all parents at an odd distance from the leaves

as o and the rest as e; see Figure 2. Now, in increasing order of their ranks, map

all e marked vertices to mesh nodes on the left side of a mesh starting from the

9

0

1

2

3

4

5

7

6 8

9

10

11

12

13

14

0

2
3

4

6

8

10

11

12

14

1

13

9

7

5

e e e e e e e e

e e

o o o o

o

Figure 2: Mapping of the vertices on the row-major indexed mesh nodes. A mesh

node with Cartesian coordinates (0; 0) is in the left bottom corner.

node with Cartesian coordinates (0; 0). Each new vertex is mapped on a leftmost

(smallest indexed) mesh node on a new line. In increasing order of their ranks,

map all o marked vertices to mesh nodes on the right side of a mesh, so that a

vertex with rank r is on the same line with e marked vertex of rank r � 1 (from

Assertion 2 we know that such a vertex exists). As we have no more than n

vertices in a tree the construction is valid. Each node is at Manhattan distance at

least n� 1 from its parent. The depth of a tree is
(log n), therefore the number

of mesh links crossed by packets issued at leaf nodes on their way to the root is

(n log n).

Second, we address the snake-like indexing scheme. Let the number of nodes

in a sub-group be 2

k

� 1, n=4 � 2

k

� 1 � n=2. Map o indexed vertices as for

row-major indexing and map e indexed vertices to the leftmost (smallest indexed)

mesh nodes of even lines. Since we have no more than n=2 elements in a sub-group

the construction is valid, which implies that
(n log n) links will be crossed by

packets issued at leaf nodes on their way to the root.

3 The Sub-group Identi�cation Algorithm

We now consider the problem of constructing synchronization trees for sub-groups

from a dynamically split parent group. The sub-group identi�cation problem can

be formulated as follows. Given

1. a group of nodes U ,

2. the mapping U $ T to the tree vertices, and

3. the function '(u) 2 f0; 1g; u 2 T , called a vertex state,

10

the task is to

1. split U into two non intersecting subsets U

0

and U

1

: U

x

= fu 2 U j'(u) =

xg, x = f0; 1g,

2. map each subset on its new synchronization tree U

x

$ T

x

, applying the

procedure described in the previous section, and

3. for each vertex u 2 T depending on its state, �nd the coordinates of its

children and a parent in the new synchronization tree.

Once a sub-group is identi�ed, the resulting synchronization tree is used to im-

plement synchronous program steps. At some point, the sub-group program will

generate either a new \sub-sub-group" identi�cation requirement, or a requirement

to restore the previous parent group. Subsequently, we call these basic operations

splitting and joining.

We start with de�nitions which allow a subsequent concise, top-down descrip-

tion of the algorithm. Vertex v 2 T is called a parent of v

0

2 T if it is an immediate

predecessor of v

0

. If v is a predecessor of v

0

it is called an ancestor (so parents are

also ancestors).

If node u 2 U is mapped on vertex v 2 T , then '(v) = '(u) and I(v) = I(u).

Let

P

x

L

(v; u)

def

= (v is in the left sub-tree rooted by u) ^ ('(v) = x)

P

x

R

(v; u)

def

= (v is in the right sub-tree rooted by u) ^ ('(v) = x) :

We use z = fL;Rg as a subscript for brevity. For any vertex u 2 T , let subsets

F

x

z

(u) = fv 2 T jP

x

z

(v; u)g which are the vertices in the left/right sub-tree rooted

by u, satisfying '(v) = x. Let B

x

(u) be the subsets of nodes with ranks smaller

than u,

B

x

(u) = fv 2 T j('(v) = x) ^ (rank I(v) < rank I(u))g

De�ne functions: t

x

= jT

x

j, f

x

z

(u) = jF

x

z

(u)j, b

x

(u) = jB

x

(u)j, and

�

x

(u) =

8

<

:

u if '(u) = x;

; otherwise;

We also use the function �

i

j

; i; j 2 f0; 1g, which is unity if i = j and zero otherwise.

The new ranks of vertex u 2 T with respect to the indexing scheme I and state x

are rank

x

I(u) = b

x

(u) + �

x

'(u)

� 1. Note that the new ranks are de�ned for both

11

states. As a consequence we have: if rank I(u) < rank I(v) then rank

x

I(u) �

rank

x

I(v).

The function m

x

z

(u) ; u 2 T is de�ned as

m

x

z

(u) = max

fv2T jP

x

z

(v;u)g

(rank

x

I(v);�1) ; (1)

which is the maximal rank of a vertex in state x in the left/right sub-tree rooted

by u (and is de�ned to return �1 in case the maximum is taken over the empty

set.

The sub-group identi�cation algorithm has two phases. In the �rst phase we

evaluate functions t

x

, f

x

z

(u) and b

x

(u) in each vertex v 2 T . In the second phase

we �nd the coordinates of the children and the parent for all u 2 T on a new

tree T

'(u)

. The �rst phase in itself consists of two passes. The forward pass is

performed on a combining tree, the backward one on a broadcasting tree. The

sub-groups belonging to the same parent group are called adjacent.

Our splitting and joining algorithms can be summarized as follows:

Sub-group identi�cation (splitting)

1. evaluate functions f

x

z

on the forward pass, and functions t

x

, b

x

and m

x

z

on the backward pass, as described in Lemma 2 below;

2. perform partial synchronization (forward pass);

3. identify ranks of the new parent and children (Assertion 1);

4. identify physical coordinates of the new parent and children;

if root, coordinates of a root in adjacent sub-group,

applying algorithm in Figure 3;

5. synchronize all vertices in the original tree;

6. activate new sub-group in each vertex.

Restoring a sub-group (joining)

1. perform partial synchronization (forward pass);

2. synchronize root vertices in adjacent sub-groups;

3. broadcast from the root to the leaves;

4. restore the original sub-group in each vertex.

It must be understood that forward/backward pass and synchronization opera-

tions presume that a processor sends/receives some number (depending on its

position in a tree) of packets to/from its parent and children. These \atomic" op-

erations are performed asynchronously, which implies that processors in di�erent

12

nodes may be at di�erent steps at any point in time.

We now present and justify the detailed implementations of the steps in the

splitting algorithm. The joining algorithm is straightforward.

3.1 Calculating Ranks for the New Trees

In this subsection we show how the various rank-related functions can be computed

for the new trees. This corresponds to step 1 in the splitting algorithm above.

Lemma 2 The function f

x

z

can be evaluated in the forward pass; the functions t

x

,

b

x

and m

x

z

can be evaluated in the backward pass.

Proof It is su�cient to show that these function evaluations only require inform-

ation stored in the vertex itself and its parent. The parent and children vertices

are logically interchanged in the combining and broadcasting trees. Let us �x

the orientation as it is for the broadcasting tree, i.e. from the root to the leaves.

Then in the �rst pass it is su�cient to show that f

x

z

requires the information

stored in the vertex and its children; in the second pass t

x

, m

x

z

and b

x

require the

information in the vertex and its parent.

If u 2 T is a leaf, then F

x

z

(u) = ;, therefore f

x

z

(u) = 0 is known in the

leaves. Let u be an intermediate vertex or the root, and u

L

, u

R

be its left and

right child respectively. Then F

x

z

(u) = F

x

L

(u

z

) [F

x

R

(u

z

) [f�

x

(u

z

)g, which means

f

x

z

(u) = f

x

L

(u

z

) + f

x

R

(u

z

) + �

x

'(u

z

)

, as F

x

L

(u

z

), F

x

R

(u

z

) and u

z

are pairwise non-

intersecting sets. If v is the only right/left child of u, then either f

x

L

(u

z

) or f

x

R

(u

z

)

corresponding to the left/right branch has to be dropped. Thus the information

stored in the children vertices is su�cient for evaluation of f

x

z

(u) in the parent

vertex u, therefore f

x

z

can be evaluated in the forward pass.

If u is the root, T

x

= F

x

L

(u)[F

x

R

(u)[f�

x

(u)g, and t

x

= f

x

L

(u)+ f

x

R

(u)+ �

x

'(u)

can be evaluated in the last step of the forward pass. Then t

x

can be broadcasted

to all vertices in the backward pass. It remains to show that b

x

and m

x

z

can

be evaluated in the backward pass. If u is the root, B

x

(u) = F

x

L

(u), therefore

b

x

(u) = f

x

L

(u) is known in the root by the end of the forward pass. Let v be the

parent of u. De�ne a function �(v; u) 2 fL;Rg, such that �(v; u) = L if u is the

left child of v, and �(v; u) = R otherwise; and also a subset S

x

z

� T

S

x

R

(u) = S

x

�(v;u)

(v) [F

x

L

(u) [f�

x

(u)g

S

x

L

(u) = S

x

�(v;u)

(v) ;

13

where initially S

x

L

(u) = ; and S

x

R

(u) = F

x

L

(u) [f�

x

(u)g if u is a root. Call the

�rst recursion the right tree rule and the second one the left tree rule. We claim

that B

x

(u) = S

x

L

(u) [F

x

L

(u). Suppose the contrary. Then either (1) there exists

w 2 T in state x with rank I(w) < rank I(u), such that w =2 B

x

(u); or (2) w

0

2 T

in state x with rank I(w

0

) > rank I(u), and w

0

2 B

x

(u); or (3) w

00

2 T in state :x,

and w

00

2 B

x

(u). From the de�nition of F

x

L

and �

x

one may see that the third

case is impossible.

Consider the �rst case. Let v

0

be the �rst common ancestor of u and w. From

rank I(w) < rank I(u) and Assertion 2 it follows that either u = v

0

and w is in the

left subtree rooted by u, or w is in the left subtree and u is in the right subtree

rooted by v

0

. Consider the former. Then from w 2 F

x

L

(u) and F

x

L

(u) � B

x

(u) it

follows w 2 B

x

(u). Consider the latter. Let v

00

be the right child of v

0

. Clearly,

v

00

is either a parent of u or u = v

00

. Thus we have �(v

0

; v

00

) = R, w 2 F

x

L

(v

0

),

F

x

L

(v

0

) � S

x

R

(v

0

), S

x

L

(v

00

) = S

x

R

(v

0

), therefore w 2 S

x

L

(v

00

). From S

x

L

(v) � S

x

R

(v)

for all v 2 T , we have w 2 S

x

R

(v

00

), hence w 2 B

x

(u) regardless of which rule is

applied in v

00

.

Consider the second case. Let v

0

be the �rst common ancestor of w

0

and u.

From rank I(w

0

) > rank I(u) and Assertion 2 we conclude that either v

0

= w

0

, in

which case u is in the left sub-tree rooted by w

0

or u is in the left subtree and w

0

is in the right subtree rooted by v

0

. In both cases w

0

=2 F

x

L

(u), therefore suppose

w

0

2 S

x

L

(u). For this to be possible there must exist an ancestor v

00

of u such that:

(i) either w

0

= v

00

or w

0

2 F

x

L

(v

00

), and (ii) the right rule is applied in v

00

. Therefore

the recursive process follows the right branch in v

00

. This contradicts the fact that

it reaches u which is in the left sub-tree of v

00

. Thus second case is also impossible.

It is not di�cult to verify that if v is a parent of u then S

x

�(v;u)

(v), F

x

L

(u)

and �

x

(u) are pairwise non intersecting subsets for all v; u 2 T . Indeed, from the

de�nitions we have �

x

(u)\F

x

L

(u) = ;. Suppose S

x

�(v;u)

(v)\F

x

L

(u) 6= ;. Then there

exists v

0

such that v

0

2 F

x

L

(u) and v

0

2 S

x

�(v;u)

(v). The latter implies existence of

v

00

, an ancestor of v, such that (i) v

0

2 F

x

L

(v

00

) and (ii) the right rule is applied in

v

00

. Thus v

0

is in the left sub-tree rooted by u and it also is in the left sub-tree

rooted by v

00

which is an ancestor of v. This implies that v is in the left sub-tree

rooted by v

00

. In order that the recursive process arrived in v it must have followed

the left branch in v

00

, which contradicts (ii). Repeating similar arguments we may

prove that �

x

(u) \ S

x

L

(v) = ;. We are about to show that b

x

can be evaluated on

the backward pass. Let s

x

z

(u) = jS

x

z

(u)j, then as a consequence of set independence

s

x

R

(u) = s

x

�(v;u)

(v) + f

x

L

(u) + �

x

'(u)

14

s

x

L

(u) = s

x

�(v;u)

(v) ;

with initial conditions s

x

L

(u) = ; and s

x

R

(r) = f

x

L

(r)+�

x

'(r)

in the root r. Therefore

b

x

(u) = s

x

L

(u) + f

x

L

(u); u 2 T . Evidently, to evaluate b

x

(u) and s

x

fL;Rg

(u) we only

need data stored in the vertex i.e. f

x

L

(u) and �

x

'(u)

and data passed from the parent

vertex v i.e. s

x

�(v;u)

(v).

The function m

x

L

can be evaluated as

m

x

L

(u) =

8

<

:

b

x

(u)� 1 if f

x

L

(u) > 0;

�1 otherwise;

We address the second condition �rst. From f

x

L

(u) = 0 it follows that F

x

L

(u) = ;.

From the de�nition of F

x

L

, it follows that P

x

z

(v; u) is false for all v 2 T , therefore

the maximum in Equation (1) above is taken over the empty set, and m

x

L

(u) =

�1 as required. Consider the case f

x

L

(u) > 0. P

x

L

(v; u) must be true for some

v 2 T . Let v be a vertex in state x in the left sub-tree of u such that rank I(v)

is maximal. Recall the de�nition of b

x

(u). It counts the number of vertexes in

state x having ranks (on the original tree) less than rank I(u). Choose vertex v

0

such that rank

x

I(v

0

) = b

x

(u) � 1. We claim that v

0

= v. Suppose the contrary.

If v

0

is in the left sub-tree of u then rank I(v

0

) < rank I(v) and b

x

(v) = b

x

(u)� 1.

On the other hand rank

x

I(v) = b

x

(v) + �

x

'(u)

� 1 = b

x

(v), because '(u) = x.

That means rank

x

I(v) = b

x

(u) � 1, i.e. a contradiction as v and v

0

are in the

same state therefore rank

x

I(v) 6= rank

x

I(v

0

). If v

0

is not in the left sub-tree of

u then either v is in the right sub-tree of v

0

, or v

0

is in the left sub-tree and v

is in the right sub-tree of their common ancestor. In both cases (Assertion 2)

rank I(v

0

) < rank I(v) which leads to a contradiction as above. Hence v

0

= v

and rank

x

I(v) = b

x

(u) � 1. As rank I(v) is maximal in the left sub-tree and

rank

x

I(v

0

) < rank

x

I(v

00

) whenever rank I(v

0

) < rank I(v

00

) for any pair v

0

; v

00

2 T

of vertexes in state x we conclude that

m

x

L

(u) = max

fv2T jP

x

L

(v;u)g

rank

x

I(v) = b

x

(u)� 1 ;

whenever f

x

L

(u) > 0.

It remains to evaluate m

x

R

:

m

x

R

(u) =

8

<

:

b

x

(u) + f

x

R

(u) + �

x

'(u)

� 1 if f

x

R

(u) > 0;

�1 otherwise;

The additive terms f

x

R

(u) + �

x

'(u)

in the �rst condition account for a contribution

of vertices in the right subtree rooted by u. The proof reduces to the arguments

used for m

x

L

.

15

3.2 Locating New Parents and Children

We now present a description of the second phase of the splitting algorithm, in

which culminates in the identi�cation of the physical locations of the new parents

and children for each vertex in the new trees. This corresponds to steps 2 to 4 of

the splitting algorithm outlined earlier. To begin this phase, we must be sure that

all the functions of Lemma 2 have been evaluated in all vertices. To ensure that

evaluations have �nished, we perform a partial synchronization (step 2), which is

a synchronization pass from the leaves to the root. One pass is su�cient because

functions t

x

, b

x

and m

x

z

have been evaluated in a preceding pass from the root to

the leaves.

We then evaluate the ranks of the children and the parent vertices in the new

synchronization tree. From Assertion 1, we conclude that t

'(u)

and rank

'(u)

I(u)

are su�cient to perform this step.

The next step is to identify the Cartesian coordinates of the children and the

parent vertices in T

'(u)

for all u 2 T . De�ne send(c) as a communication operation

on a mesh node which sends a packet to the node with coordinates c. Assume that

a packet carries a triple (q; r; c): the state q 2 f0; 1g of a (source) vertex looking

for its new parent and children; the rank r of a destination vertex in a new tree T

q

;

and Cartesian coordinates c of the mesh node associated with the source vertex.

In Figure 3 we give the algorithm (\routing on a tree") for determining the mesh

coordinates of the new parent and children. Parent, left.child, and right.child

apply to vertex v 2 T , and give the Cartesian coordinates of its parent and its

children. The routing of a packet is done when the packet arrives at the vertex

with rank r in state q (this check is omitted).

if b

q

> r then

if m

q

L

= �1 then send (parent (v));

else if (m

q

L

� r) ^ (m

q

L

� f

q

L

< r) then send (left.child(v));

else send (parent (v)); �;�;

else if m

q

R

= �1 then send (parent (v));

else if (m

q

R

� r) ^ (m

q

R

� f

q

R

< r) then send (right.child(v));

else send (parent (v)); �;�;�;

Figure 3: The Algorithm for routing on a tree (step four).

Lemma 3 The packet (q; r; c) arrives in the vertex u, such that rank

q

(u) = r.

16

Proof Suppose a packet is in some u 2 T . If b

q

(u) > r, the destination vertex is

not in the right subtree rooted by u. If m

q

L

(u) = �1, the left sub-tree contains

no vertices in state q, hence the only direction is the parent vertex. If (m

q

L

(u) �

r) ^ (m

q

L

(u)� f

b

L

(u) < r) is true, the maximal rank of the vertices (in state q) in

the left sub-tree is � r and the minimal rank is < r. Recalling Assertion 2, and

the fact that given any pair of vertices in the same state, their ranks on a new

tree are linked by the same relationship as on the original tree, we conclude that

in the left sub-tree there exists a vertex with rank r. If either of these conditions

is false, a packet will be routed to the parent vertex. Indeed, if m

q

L

(u) < r, the

maximal rank of the vertices in the left sub-tree is < r, hence a packet must be

routed to the parent. From m

q

L

(u) > r + f

q

L

(u) it follows that all vertices in the

left sub-tree have ranks > r. Hence, in that case the packet also must be routed

to the parent.

The branch of the algorithm corresponding to the case b

q

� r is proven via

similar arguments.

Step 5 ensures that the routing on a tree has been completed. On completion

the new sub-group is activated (step 6) i.e. T becomes T

'(v)

for all v 2 T . Notice

that a packet passes only once through any node, in other words, the algorithm

routes a packet along the shortest path on a tree. An example of a subgroup

identi�cation problem illustrating the algorithm is given in the appendix.

4 Algorithm Analysis

We now analyse the sub-group identi�cation algorithm of the previous section.

Let us look at this algorithm in terms of packet routing. As building blocks it

incorporates three problems: combining, broadcasting and routing on a tree. Each

of these problem can be formulated as an algorithm on logical (virtual) tree. In

order to �nd their complexity we are using the following scheme: simulate each of

these algorithms on a physical tree isomorphic to the logical tree, then simulate

the physical tree on a mesh.

The complexity of the sub-group identi�cation algorithm is analysed when

independent sub-groups perform synchronization/identi�cation operations simul-

taneously in other words in a dynamic context. We prove that given a sub-group

of s elements the communication complexity of our algorithm is O(n log s) in this

dynamic context. Lemmas 4 and 5 below cover the complexity for routing on a

tree (step 4 of the splitting phase).

17

Lemma 4 For any u 2 T which is a root of a subtree with s vertices, the number

of packets in step 4 crossing the edges incident on u for any �xed orientation is at

most 3 log s.

Proof Consider any U

x

� U and the mapping U

x

$ T

x

introduced in Section 2.

The algorithm in Figure 3 routes the packets along the shortest path on a tree.

From this and Assertion 2 we conclude that a packet will be routed through some

vertex u 2 T if either the source (destination) vertex belongs to the tree rooted

by u and the destination (source) vertex does not, or the source (destination) is

in one of u's sub-trees and the destination (source) is either in the other sub-

tree or is u itself. Let T

u

� T be a subtree with a root u. De�ne T

x

u

= fv 2

T

u

j'(v) = xg, r

x

max

= max

v2T

x

u

rank

x

I(v) and r

x

min

= min

v2T

x

u

rank

x

I(v). Let us

call (v; v

0

); v; v

0

2 T

x

, where either v or v

0

is a parent of the other a connected

pair. De�ne sets

V

R

= fv 2 T

x

u

j rank

x

I(v

0

) > r

x

max

; v

0

2 T

x

g ;

V

L

= fv 2 T

x

u

j rank

x

I(v

0

) < r

x

min

; v

0

2 T

x

g ;

V

T

= fv; v

0

2 T

x

u

j (rank

x

I(v) � rank

x

I(u)) ^ (rank

x

I(v

0

) > rank

x

I(u))g :

Notice that jV

R

j + jV

L

j + jV

T

j is the number of packets crossing edges incident

on u for any �xed orientations. Find w;w

0

2 V

R

, such that w has minimal rank

in V

R

, and w

0

has minimal rank in V

R

n fwg. Introduce the notation l

u;v

=

rank

x

I(u)� rank

x

I(v). We claim that

l

w

0

;w

� (r

x

max

� rank

x

I(w)) = 2 : (2)

Indeed, letting (w

0

; v

0

) be a connected pair, then

l

w

0

;w

� l

v

0

w

0

> r

x

max

� rank

x

I(w

0

) (3)

The second (right) inequality takes place as rank

x

I(v

0

) > r

x

max

. The �rst (left)

one, as it is shown below, follows from the de�nition of the mapping procedure.

Consider vertex v such that (w; v) is a connected pair. Then we have

rank

x

I(w) < rank

x

I(w

0

) < rank

x

I(v

0

) < rank

x

I(v) : (4)

The �rst two inequalities follow from the previous de�nition. Let us prove the last

one. Indeed, as (w; v) and (w

0

; v

0

) are connected pairs the only possibilities are

that (i) either none of vertexes from one pair is a parent of vertexes in the other

(ii) or at least one vertex of four is an ancestor of the others. Case (i) presumes

18

that (w; v) and (w

0

; v

0

) have a common ancestor. From Assertion 2 it follows that

segments [rank

x

I(w); rank

x

I(v)] and [rank

x

I(w

0

); rank

x

I(v

0

)] are non-intersecting,

that is w and w

0

can not be members of V

R

simultaneously, i.e. a contradiction.

Therefore assume case (ii) takes place. Observe that rank

x

I(v) < rank

x

I(v

0

) leads

to a contradiction: choosing any of v;w; v

0

or w

0

as an ancestor it is impossible

to construct a sub-tree which is in agreement with Assertion 2. The only possible

cases are: (a) w is the left child of v and w

0

; v

0

are in the right subtree of w, (b) v

is the right child of w and w

0

; v

0

are in the left subtree of v.

Suppose that w

0

is a parent of v

0

(which is its right child). Let v

00

be its left

child. In both cases (a) and (b) above v

00

is in the right subtree of u which means

l

w

0

;w

> l

w

0

;v

00

. From the de�nition of the mapping procedure we can see that for

any sub-tree the number of vertexes in the left sub-tree is at most that in the

right sub-tree plus one. For the case under consideration this can be written as

l

w

0

;v

00

� l

v

0

;w

0

. Comparing with the preceding inequality we �nd that l

w

0

;w

> l

v

0

;w

0

therefore the �rst inequality in (3) holds if w

0

is a parent of v

0

.

Suppose v

0

is a parent of w

0

. From the de�nition of the mapping procedure we

conclude that l

w

0

;w

� l

v

0

;w

therefore both inequalities in (3) are proved. Comparing

l

w

0

;w

+ r

x

max

� rank

x

I(w

0

) = r

x

max

� rank

x

I(w) with (3) we obtain (2).

The process can be repeated with respect to w

0

and w

00

2 V

R

, where w

00

has a

minimal rank in V

R

n (fwg [fw

0

g). Applying (2) to l

w;w

0

, l

w

0

;w

00

, etc, repeatedly

we �nd that jV

R

j � log r

x

max

� r

x

min

� log s. Similarly we prove that V

L

� log s

and V

T

� log s. Hence jV

R

j+ jV

L

j+ jV

T

j � 3 log s.

Our next step is to establish a bound on the number of the communication

steps required for routing on a tree (step 4 of the splitting algorithm) on a network

in the form of a binary tree. To avoid confusion we call a synchronization tree

a virtual tree and the network a physical tree. A virtual tree is isomorphic to a

physical tree. Assume that the physical tree has bidirectional links capable of

transferring a packet between two adjacent vertices in one communication step.

Lemma 5 Step 4 de�ned on a virtual tree T of size s = jT j can be simulated

on a physical tree of size s in O(log s) tree communication steps with queue size

O(log s) in each node.

Proof Let us represent step 4 as six routing problems solved one by one. These

routing problems involve �nding the parent and the left and right children in

a new synchronization tree for each vertex in state zero and one. Each packet

carries the rank of the destination node. Introduce the following prioritization

19

scheme: (a) if there are two packets in a queue such that both have the rank of a

source smaller than that of their destination then a packet with higher destination

rank has priority over that with smaller rank; (b) if both packets have ranks of a

destination smaller than that of a source then a packet with smaller destination

rank has priority over that with a large one; (c) if one packet has a rank of a

source smaller than that of a destination and the other one has a rank of a source

larger than that of a destination then the �rst packet has priority over the second

one. We refer to these as rule (a), (b) and (c) respectively. Let v and v

0

be a

source and a destination such that rank

x

I(v) < rank

x

I(v

0

). Then v is in the left

sub-tree rooted by some node u and v

0

is in the right sub-tree (we allow u � v

0

).

Consider delays on the path from v to u. According to rule (a) this packet can

be delayed only by packets having larger ranks of a destination. From rank

x

I(v) <

rank

x

I(v

0

) we have rank I(v) < rank I(u) < rank I(v

0

), which means that all

packets with ranks of a destination larger than rank

x

I(v

0

) in a sub-tree rooted

by u pass through the (left) link incident u. Let s

u

denote the total number of

nodes in a sub-tree rooted by u. From Lemma 4 we know that the total number

of packets crossing this link is less than 3 dlog s

u

e. Assume that the queue size

is 3 dlog s

u

e for each link. Therefore the packet can not be delayed more than

3 dlog s

u

e times on its way to u. When in node u, it can be delayed at most

3 dlog s

u

e times by the packets leaving u along the right link, i.e. it may su�er at

most 6 dlog s

u

e delays in total. The distance from u to v

0

is at most dlog s

u

e hence

nothing may prevent a packet from leaving u later than 7 dlog s

u

e.

Applying similar arguments we can prove the same result for rank

x

I(v) >

rank

x

I(v

0

) (in this case a packet will be in the right sub-tree with respect to u,

i.e. rules (b) and (c) are applicable on the path from v to u). Thus this property

holds for all packets.

Consider delays on the path from u to v

0

. We claim that if the packet arrives

in vertex u

0

(in the right sub-tree of u) with s

u

0

nodes at time 7 dlog s

u

e+ level u

0

�

level u it will not su�er additional delays. Suppose contrary. Then there must

exist a delaying packet having a source and a destination within a subtree rooted

by u

0

. As was proved above nothing may prevent the delaying packet from leaving

u

0

by the time 7 dlog s

u

0

e < 7 dlog s

u

e + level u

0

� level u, which is a contradiction.

Hence the packet arrives in v

0

by 8 dlog s

u

e communication steps.

The outlined scheme works for all six routing problems mentioned above. Each

routing problem can be solved on a physical tree in O(log s) tree communication

steps. Solving the problems one by one we �nish in O(log s) tree communication

steps.

20

Consider the simulation of physical tree on a mesh. It should be clear from the

construction in Section 3 that for any mesh indexing scheme all vertices of a syn-

chronization tree are mapped to di�erent mesh nodes. Each node of a tree has at

most three links associated with it. These facts mean that parallel communication

on physical tree can be simulated as three 1�1 permutation routing problems on a

mesh, the �rst permutation associated with left child communication, the second

with right child and the third with the parent. In [12] it has been shown that 1�1

permutation routing on a mesh can be solved in 2n+O(log n) parallel communic-

ation steps with O(log n) queue sizes with high probability (this algorithm has an

adaptation preserving the individual locality, i.e. if a packet has to travel the dis-

tance d it will be routed in O(d) communication steps). From Lemma 5 it follows

that we need O(log s) parallel communications on physical tree to simulate step 4

(routing on a tree). Therefore we need at most O(n log s) parallel communication

steps on a mesh. The same is true for combining and broadcasting. Indeed, given

a sub-group of s elements these problems require O(log s) steps on a virtual tree

and O(log s) parallel communications on physical tree.

Consider sub-group identi�cation in dynamic context. Synchronization trees

corresponding to these problems are mapped on di�erent mesh nodes. Therefore

simulation of parallel communications performed on these trees reduces to at most

three 1� 1 permutations on a mesh. The above arguments provide a proof for

Theorem 4 The algorithm identi�es f0; 1g sub-groups within s-element sub-group

in O(n log s) parallel mesh communication steps with queue size O(log n) in the

dynamic context with high probability.

Note that we did not exploit the locality preserving property of the permutation

routing algorithm [12], which has only been proven to hold for a single permutation

rather than for 1 � 1 permutations performed in the dynamic context. However,

this is likely to be the case in the dynamic context as well [13]. If so, we can state

that the algorithm identi�es a sub-group of any size on a Hilbert indexed mesh in

O(n

p

log n) communication steps in the dynamic context with high probability.

5 Experimental Results

In this section, we back up the analytical results with three sets of experiments:

1. Sub-group identi�cation or synchronization tree construction for dynamic-

ally created sub-groups: overhead v. size of sub-group (Hilbert indexing).

21

2. Synchronization of sub-groups using dynamically created trees: overhead v.

sub-group size (Hilbert indexing).

3. Sub-group identi�cation for sub-groups consisting of consecutively indexed

mesh processors: overhead v. sub-group size of (Hilbert and row-major)

All experiments use a 256 processor mesh and randomly generated sub-groups.

The overhead is given as a number of parallel neighbour-to-neighbor mesh com-

munications. Since we are interested in getting an idea of how the techniques

will work in practice, and con�rming the analytical results, the simulated mesh

model is simple and realistic. Each input/output link has q bu�ers to store pack-

ets. Queue over
ow is avoided by means of a \network stabilization" mechanism,

which can be brie
y summarized as follows: if there is a free bu�er on the receiving

link an acknowledgment is sent back to the sending link in the adjacent node, and

the packet is sent; if there is no space the acknowledgment does not return until

space appears (deadlock free routing guarantees that this happens eventually).

The protocol behind the experiments, with respect to the dynamic generation

of sub-groups (i.e. their 0/1 labels, for input to the splitting process) needs to

be outlined. We specify which processors become members of which sub-groups

as follows. At the top most level all nodes belong to one group. Each processor

executes a loop where a �xed number of nested splittings is followed by the same

number of joins. For each splitting a processor receives a random argument: either

1 or 0 identifying its membership in a sub-group (these values are the random

variables). To collect statistics uniformly over the sub-group size we applied the

following distribution. Consider a sub-group of size s at some level of splitting.

Each processor evaluates two independent uniformly distributed random variables

�; � 2 [0; s). � is the same for all processors within a sub-group, while all �'s are

independent. If � > �, then assign a processor to a sub-group 1, otherwise to 0.

The results for experiment sets 1 and 2 listed above are given in Figure 4. Ex-

periments were repeated at least 2000 times for each case. The nesting (splitting)

level is four. Note that the overhead grows within the region s < n and remain

almost constant afterwards. The worst case complexity of splitting overhead for

Hilbert indexing given in section 2 can be generalized for sub-groups of size s

as
(n

p

log s). Thus our experiments suggest that for randomly generated sub-

groups, on average, the overhead is much less than in the worst case. The behavior

of synchronization (see Figure 4) overhead is similar to the splitting overhead but

the absolute value is smaller.

The results for experiment set 3 listed above are given in Figure 5. This demon-

22

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

1
2
3
4

Figure 4: Sub-group identi�cation overhead for random subgroup vs. subgroup size

(Hilbert indexing scheme): 1 { average, 3 { maximal (observed); synchronization

overhead: 2 { average, 4 { maximal.

0

100

200

300

400

500

0 50 100 150 200 250

1
2
3
4

Figure 5: Sub-group identi�cation overhead for random subgroups with consecut-

ively indexed nodes (Hilbert indexing) vs. subgroup size: 1 { average, 3 { maximal

(observed); same for row major indexing: 2 { average, 4 { maximal.

23

strates the in
uence of the locality preserved by Hilbert indexing on reducing the

overhead. One may observe that the row major indexing scheme exhibits almost

twice as large an overhead as than the Hilbert indexing scheme.

6 Related work

The SB-PRAM project [1] aims to implement a fairly direct realization of the

PRAM model, in which 128 processors are connected via a butter
y network to

128 memory modules and lock-step synchronization is enforced at the level of

machine instructions (i.e. in traditional PRAM style, across the whole machine,

irrespective of higher level semantic activity). At this low level, synchronization

is achieved through a development of the approach originally proposed by Ranade

[11], with ghost packets and packet combination at network switches. With such a

strong foundation (which we would, however, argue to be unscalable), higher level

synchronization can be achieved in a straightforward way. Essentially the idea is

that at each partition point, a new shared location (e�ectively a semaphore) is

created for each new group. This is initialized (from 0) by an atomic increment

from each group member. Synchronization is then achieved by requiring each

group member to decrement the variable, busy-waiting until it is 0 once more.

The variable is re-initialized and the synchronized processors proceed. Sequential-

ized access to the variable is avoided by combining in the network with what is

e�ectively a standard `fetch-and-add' operation. Notice that this method does not

require the processors in a group to know the size of the group or indeed to know

anything about the other members. In [9] it is reported that synchronization can

be achieved in 10 SB-PRAM cycles, irrespective of the number of processors.

We could certainly adopt a scheme similar in principle (i.e. working at the

level of emulated PRAM instructions). The main drawback would be that the

combining techniques which make the method practical in the SB-PRAM for re-

latively small networks leads to
(n

2

) worst-case synchronization overhead. Our

tree-based synchronization is O(n log n) with high probability on meshes.

References

[1] Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W.J., and Scheerer, D.,

\On the Physical Design of PRAMs", Computer Journal, Vol. 36, No 8,

pp. 756-762, 1993.

24

[2] Bilardi, G., and Preparata, F.P., \Horizons of Parallel computation." in:

A. Bensoussam, J.-P. Verjus (eds.), Future Tendencies in Computer Science,

Control and Applied Mathematics, Int. Conf. on the Occasion of the 25th

Anniversary of INRIA, LNCS 653, 1992, pp. 155-174.

[3] Blelloch, G.E., Hardwick, J.C., Sipelstein, J. and Zagha, M., \NESL User's

Manual", Tech. Report CMU-CS-95-169, School of CS, Science, CMU, 1995.

[4] Chochia, G., Cole, M., and Heywood, T., \Implementing the Hierarchical

PRAM on the 2D Mesh: Analyses and Experiments", Proc. of the 7

th

IEEE

Symp. on Par. and Dist. Processing, San Antonio, 1995, pp. 587-595.

[5] Hagerupt, T., Schmitt, A., and Seidel, H., \FORK: A high-level language

for PRAMs", Future Generation Computer Systems, 8, 1992, pp. 379-393.

[6] Heywood, T., and Ranka, S., \A Practical Hierarchical Model of Parallel

Computation. I. The Model", Journal of Parallel and Distributed Computa-

tion, 16, 1992, pp. 212-232.

[7] J�aJ�a, J., \An Introduction to Parallel Algorithms", Addison-Wesley, 1992.

[8] Kaklamanis, C., and Persiano, G., \Branch-and Bound and Backtrack

Search on Mesh-Connected Architectures", Proc. 4th ACM Symp. on Par-

allel Algorithms and Architectures, 1992, pp. 118-126.

[9] Kessler C.W. and Seidl H., \Fork95 Language and Compiler for the SB-

PRAM", 5th Intl. Workshop on Compilers for Parallel Computers", 1995.

[10] Leighton, T., Maggs, B, Ranade, A., and Rao, S., \Randomized Routing

and Sorting on Fixed-Connected Networks", J. of Algs, July 1994.

[11] Ranade, A.G.,\How to Emulate Shared Memory", Journal of Computer and

System Sciences, Vol. 42, 1991, pp. 307-326.

[12] Rajasekaran, S., and Tsantilas, T., \Optimal Routing Algorithms for Mesh-

Connected Processor Arrays", Algorithmica, Vol. 8, 1992, pp. 21-38.

[13] Rajasekaran, S., Personal communication.

25

7 Appendix

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1

2

4

3

5

6 7

8

12

10 14

13

1511

9

a b c

(0,0)

(0,0)(0,0) (0,0) (0,0) (0,0)(0,0) (0,0)

(0,0)

(0,0)(0,0) (0,0) (0,0) (0,0)(0,0) (0,0)

(4,3) (1,1)(2,1)

(1,0)

(1,0)

(0,0) (0,0) (0,0)

(4,4) (2,2)(2,2)

(1,1) (1,1) (1,1) (1,1)

(0,0)

0

1

1

2
4

6

75

5 6 7 82 3 4

3

0

0

1

2
4 6

5 7

1 2

3

3 4 5 6 7

(*,*)

(*,*) (*,*) (*,*) (*,*) (*,*) (*,*) (*,*)

(*,*) (*,*) (*,*)

(*,*) (*,*) (*,*) (*,*) (*,*) (*,*) (*,*)

(*,*)

(*,*)

(3,7)

(4,7)(1,2)

(0,*)

(0,*)

(3,7)

(5,7)

(6,7)

(1,3)

(2,3) (4,5)(0,1)

m m

f f

b b

1

z

0 1

1

z
z

0

0

z

Figure 6: Original sub-group with odd nodes in state 0, even nodes in state 1

and its synchronization tree: �gure a. The sub-group split into two 0/1-subgroups

and their synchronization trees: �gures b and c. Functions f

x

z

evaluated at the

forward pass, functions b

x

and m

x

z

evaluated at the backward pass (�1 is shown

as asterisks).

26

