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Abstract

The problem of tolerating faulty processors or links in hypercubes has been studied by

many researchers, either by using spares or by recon�guration. Massively parallel com-

puters, using thousands of processors, will be the future trend for producing tremendous

computational power. However, in the current technology, if one processor fails, the en-

tire system may fail. A major drawback of hypercubes is that a single processor failure

may destroy the whole network. The existence of a large number of components in such

systems makes them subject to failures. As the probability of any one or more processors

failing in such a complex system is large, building some fault-tolerance feature into them

becomes extremely important. Fault tolerance in highly parallel computers is important

for achieving high-performance reliable computing. This manuscript is mainly a survey

of fault tolerance and related issues of hypercube-based multicomputers.
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1 Introduction

Hypercubes are attracting much attention from both parallel processing and communication

[17] areas. Research in this area has revealed a number of challenges that need to be addressed

for building high performance reliable multicomputer systems. A major drawback of hyper-

cubes is that a single processor failure may destroy the whole network. The existence of a

large number of components in such systems makes them subject to failures. As the probab-

ility of any one or more processors failing in such a complex system is large, building some

fault-tolerance features into them becomes extremely important. Hypercube networks are at-

tractive structures for parallel processing because of their symmetry and regularity. They are

highly regular, symmetric, and recursive structures, having nice properties [66, 78, 82]. A

comparative study of topological properties of hypercubes and star graphs is presented in [39].

A comparative study of fault-tolerant computation on the star graph and hypercubes can be

found in [13]. A major reason that the hypercubic networks are so commonly used in parallel

machines is that they can e�ciently simulate any bounded-degree communication network.

Fault tolerance in hypercube networks has received substantial attention from both parallel pro-

cessing and fault tolerance research communities. As a result, several approaches for solving

the problem of tolerating faults in hypercubes have been proposed. The problem of embedding

binary trees in hypercubes has been presented in several papers, such as [21, 76, 93, 101].

Recon�guration of binary trees in hypercubes also has been studied by many researchers. The

problem of �nding (n � 1)-binary tree in faulty hypercubes is studied in [30]. A distributed

scheme for recon�guring binary trees in faulty hypercubes is presented in [102]. Fault tolerance

of binary tree embedding in hypercubes in a way that minimizes congestion, dilation, and slow-

down is described in [42]. Recon�guration of spanning trees in faulty hypercubes is presented

in [6]. Mapping general trees and graphs into the hypercube is presented in [95]. Numer-

ous researchers have looked at the problem of recon�guration in hypercubes using hardware

approaches. Other researchers have proposed software approaches to recon�gure hypercubes.

One approach is to identify the maximum size of a fault-free subcube in the hypercube [18, 43]

and to run the parallel application on that smaller subcube. Another software approach would

be to distribute the work allocated to the faulty processor to some other processor or set of

processors.
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Figure 1: A 3-dimensional hypercube with eight nodes.

1.1 De�nitions

De�nition 1.1 Hypercube of dimension n has N = 2

n

nodes. Node i has address (i

n�1

i

n�2

� � � i

0

)

with address bits numbered from 0 through n � 1. The mth bit corresponds to dimension m

in the Boolean space. Two nodes i and j are connected by an edge in the hypercube if their

addresses di�er by only one bit. The edge (i; j) where i � j = 2

m

(m ranges from 0 to n � 1)

is a connection through dimension m.

Figure 1 shows a hypercube of dimension 3 with eight nodes. An N -node hypercube can be

constructed from two

N

2

-node hypercubes by connecting the ith node in one

N

2

-node hypercube

to the ith node in the other one for 0 � i <

N

2

. In addition to the simple recursive structure, the

hypercube possesses many nice properties. For example, it is node and edge symmetric, and it

has low diameter (logN). These nice properties make hypercubes suitable for embedding and

recon�guration, as we will see later. The edges of the hypercube can be partitioned according

to the dimensions that they traverse. An edge is called a dimension k edge if it links two nodes

that di�er in the kth bit position. For example, the edge (001; 101), in Figure 1, is a dimension

2 edge because the nodes 001 and 101 di�er in dimension 2.

De�nition 1.2 Partial failure is a failure where the processor can continue to handle com-

munication (i.e. loss of the main processor, but continuing operation of the communication

coprocessor).
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De�nition 1.3 Dilation is normally de�ned as the number of links of the logical replacement

of a physical link caused by failure. A dilation of edge e is the length of the path between its

hypercube nodes.

De�nition 1.4 Extra-dilation is de�ned as the maximum number of extra links (over the

shortest path) necessary to reconstruct a path between two nodes when recon�guring the hyper-

cube.

De�nition 1.5 Congestion of a link (node) is the number of logical paths that uses each

fault-free physical link (node) in a recon�gured hypercube. The congestion of an edge e (node

n) is the number of paths that uses e (n).

De�nition 1.6 Extra-congestion of a link (node) is the maximum number of extra paths

that uses a hypercube edge (node) as a result of the recon�guration process.

De�nition 1.7 Fault coverage is the percentage of tolerated faults, which is the ratio between

the number of tolerated fault combinations and the total number of possible fault combinations.

De�nition 1.8 Network Reliability (NR): The reliability measure assuming that the sys-

tem works as long as all nodes are working and connected.

De�nition 1.9 Task-Based Reliability (TBR): The reliability measure assuming that the

system works as long as some minimum number of connected nodes are available in the system

for task execution.

De�nition 1.10 Terminal Reliability (TR): The reliability measure assuming that the sys-

tem works as long as two speci�ed nodes are working and connected.

De�nition 1.11 Subcube Reliability (SR): The reliability measure assuming that the sys-

tem works as long as some functional minimum degree subcube exists.

De�nition 1.12 Expansion is the ratio of number of nodes of the host graph to the number

of nodes of the mapped graph.
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De�nition 1.13 Load is the maximum over all processors of the number of nodes that are

mapped to the same processor.

De�nition 1.14 Virtual channel is a logical entity associated with a physical link used to

distinguish multiple streams using the same physical link.

De�nition 1.15 Static routing is routing messages along a static (i.e. �xed) path de�ned

before the computation starts. The path a message takes is determined by the source-destination

pair without considering the network state (e.g., busy or faulty).

This kind of routing is also called oblivious or deterministic routing [102]. This kind of routing

does not use the bandwidth properly, and messages may be blocked even if alternative paths

exist.

De�nition 1.16 Dynamic routing is routing messages making use of the alternative paths

between communicating processors. For a given source and destination, the path taken depends

on the network state taking care of the faulty and congested channels.

This routing makes e�cient use of the bandwidth providing more fault tolerance. This kind of

routing is also called adaptive routing [102].

2 Fault Tolerance in Hypercubes

Numerous researchers have looked at the problem of recon�guration in hypercubes using hard-

ware approaches. Other researchers have proposed software approaches to recon�gure hyper-

cubes. One approach is to identify the maximum size fault-free subcube in the hypercube and

to run the parallel application on that smaller subcube. Another software approach would

be to distribute the work allocated to the faulty processor to some other processor or set of

processors. In this section, we discuss both the hardware and software approaches for solving

the problem of fault tolerance in hypercubes.
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2.1 Hardware Approach

Fault tolerance in hypercubes can be achieved by adding extra hardware (e.g., nodes or links)

to the standard hypercube structure. Such hypercubes are called non-degradable hypercubes,

because they achieve the same hypercube performance through the use of extra hardware [49].

Rennels suggested two schemes that use spare nodes to tolerate node failures in a hypercube.

In both schemes, the nodes are built with extra ports to communicate with spares. In the �rst

scheme, an n�cube consists of subcubes, each containing 2

m

nodes, where s + m = n. One

spare node is provided for each m-cube, and the nodes are connected through their extra port

to the spare. Whenever a primary node fails, the spare is connected to the m neighboring

nodes in the subcube and to the s neighbors in other neighboring subcubes. Two crossbar

switches per spare are used for recon�guration. The Connection Crossbar (CCB) has 2

m

+ s

inputs and n outputs. The outputs are connected to the spare. Out of the 2

m

+s inputs, 2

m

are

connected to the primary processors. Each of the remaining s inputs comes from one output of

the Relay Crossbar (RCB) of each of the other s subcubes to which the module is connected.

The RCB has 2

m

inputs and s outputs. The inputs come from all the nodes in the subcube

and each output goes to one of the s subcubes to which the subcube is connected. On failure

in a subcube, its CCB connects the spare processor to the m neighbours of the failed processor.

The RCB in each neighbouring subcube recon�gures so that the neighbour of a failed processor

is now connected to the replacement of the failed processor. The various components of this

scheme are shown in Figure 2. The reliability of this scheme is calculated as follows. Each

subcube of order m can tolerate at most one fault. There are 2

s

such subcubes. Therefore the

system reliability of this scheme is:

RB

m;s

= [r

2

m

+ 2

m

r

2

m

(1� r)c]

2

s

(1)

where r is the reliability of each node, and c is the fault coverage. For high reliability

systems, another scheme is proposed in which each module is made internally redundant. The

redundancy is in the form of spare memorymodules, processors etc. One such module is shown

in Figure 3. Four processors and a spare are connected by a high speed bus and packaged as a

multiprocessor. Four ports are provided to communicate with other multiprocessors. To realize

a 64-node cube, for example, 16 multiprocessors are interconnected as a 4-cube. The major

disadvantage of this scheme is the large hardware cost involved in the design of the crossbar

switches.
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Figure 2: A subcube in Rennels' scheme.
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Figure 3: Redundant multiprocessor for use in large array.
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A similar scheme for recon�guring faulty processors is proposed by Banerjee et al. [16]. The

scheme involved the detection and location of faulty processors concurrently with the actual

execution of parallel applications on the hypercube. Algorithmic-based fault tolerance for

matrixmultiplication and FFT is discussed. The algorithms are modi�ed to include system level

checks. The simulation was done using the Intel 16-node Hypercube. The problem of placing

spare processors and links in an augmented hypercube topology is presented. Recon�guring

faulty processors was done by using two spare processors for every eight normal processors of

the original hypercube. Each normal hypercube node has a degree of n+ 1, and the degree of

each spare node is n + 2. Redundant nodes and links are added to the hypercube, increasing

the dimension of the cube by one. However, the regularity of the structure is maintained. Two

other recon�guration strategies for hypercube multicomputer architectures under failures are

presented in [14]. The �rst one used spare processors attached to certain processors in the

hypercube. The second scheme placed spare processors between speci�c links in the hypercube.

Both of the recon�guration schemes described in the paper used the notion of replacing physical

links by logical links (i.e. dilation), and hence su�er some performance degradation. In the �rst

approach, there are two kinds of nodes, the P nodes and S nodes. The P and the S nodes are

embedded in the hypercube in such a way that each P node is adjacent to exact exactly one S

node in the cube, as shown in Figure 4a. This is called perfect embedding. The architectures of

P nodes and S nodes are shown in Figure 4b and Figure 4c respectively. The P node consists

of a computation processor (CPU) connected through an internal bus to a local memory and

message routing logic consisting of the DMA unit and a (d+1)�(d+1) crossbar switch for a 2

d

processor hypercube. The S-node consists of two copies of CPU and memory connected to two

internal busses. The two processing units share the DMA and message routing logic. One of the

processors is active under normal conditions; the other is a standby spare. When any processing

element fails, either within the S node or in a nearby P node, the spare processor/memory/bus

from the corresponding S node replaces it. A centralized algorithm that runs on the host

computer to recon�gure the hypercube under multiple faults is presented. This algorithm used

weighted bipartite matching to allocate spares to faulty nodes. In the second case, the spares

are inserted at links between nodes. The nodes are �rst collapsed in any dimension, then the

algorithm in the �rst approach is applied. Finally, the collapsed cube is expanded and for each

spare node, a spare is inserted. The reliability of the �rst scheme is good for relatively small

number of faults. As the number of faults increases, the reliability goes down, as each primary

node is covered by only one spare. A major drawback of this scheme is that nodes do not have
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the same structure. Spare nodes consists of two CPUs; however, normal nodes have only one

CPU each. The simulation results for both schemes showed that the maximum dilation is �ve

and the maximum congestion is six for a hypercube of dimension 4. Design and evaluation of

these two strategies for recon�guring hypercubes under faults is also discussed in [15, 70, 71].

Several proposals for fault tolerance in hypercubes rely on the concept of fault tolerant basic

blocks. Chau and Liestman [27] proposed a fault-tolerant-hypercube architecture based on

modular construction. Each fault-tolerant module (FTM) consists of 2

m

active nodes and k

spare nodes. Decoupling networks are used to realize the connections within and among the

FTMs. Figure 6 shows k levels of decoupling networks being used to connect 2

m

primary

nodes (m=2 in the �gure) and k spare nodes from one FTM to another. To realize intra-

modular connections, m groups of k level decoupling networks are used. Figure 7 shows how a

2-dimensional hypercube can be constructed using two decoupling networks. Whenm = 2 and

1 2 3 4+k

Level k

Level k-1

Level 1

connections to another module

Figure 6: Decoupling networks used to interconnect fault-tolerant modules.

with k spares, the intra-modular connections can be realized using soft switches as shown in

Figure 8. When a fault occurs, the soft switches bypass the failed node. At the same time, the
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Figure 7: Using 2 decoupling networks to form a 2-dimensional fault-tolerant hypercube.

decoupling networks are recon�gured, as shown in Figure 9 so that the hypercube structure is

maintained. This scheme is generalized for global sparing, where m = n and the entire network

is a fault-tolerant module. In the local sparing scheme, where the n-cube consists of FTMs

Soft Switches

1 2 3 4 5 4+k

Figure 8: A fault-tolerant module with 4 primary nodes and k spare nodes.

having 2

m

primary nodes and k spare nodes, the reliability of a module is given by:

RM

m;k

= RM

m;k�1

+

 

2

m

+ k � 1

k

!

r

2

m

(1 � r)

k

c

k

(2)

where r is the reliability of a node. The reliability of an n-dimensional hypercube with 2

m

active processors and k spares in each module is given by:

RS

n;m;k

= (RM

m;k

)

2

n�m

(3)

The global sparing scheme uses fewer spares than the Rennels basic scheme to achieve the

same level of reliability. Chau showed that when n � 8, global sparing is preferable to modular

sparing. However, the assumption that any nonfaulty processor in a module can recognize

the faults is not realistic. This scheme takes longer to recon�gure in the presence of faults

because, on average, the states of half the nodes will have to be shifted to neighboring nodes.

Furthermore, this scheme does not account for link failures. Only the system reliability under

node failures has been analyzed.
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Figure 9: Recon�guring an FTM with 4 primary nodes and 3 spare nodes when a fault has

occurred.

Sultan and Melhem [86] introduced two methodologies for recon�guration in fault-tolerant

modules. The �rst scheme uses hardware switches to recon�gure in the presence of faults,

and provides full spare utilization. As an example, consider a Fault Tolerant Basic Block

(FTBB) with M primary nodes P

1

; P

2

; ::::P

M

and K spare nodes S

1

; S

2

; :::::; S

K

. Multiplexers

and demultiplexers are used to implement the switching logic for recon�guration. A 1-to-(K+1)

demultiplexer is used for each P

j

to divert, when needed, the links of P

j

to any S

i

. Also, an

M-to-1 multiplexer is used for each S

i

to connect it to the M neighbors of the failed node. If a

primary node P

j

is non-faulty, then the demultiplexer is set to select the 0th output. In case

P

j

is faulty, the replacement of P

j

by S

i

requires that the demultiplexer associated with P

j

be

set to its ith output and the multiplexer associated with S

i

be set to select its jth input. The

scheme can also support spare failures and does not have the overhead of switching processor

states, which is present in Chau's scheme. This leads to signi�cant reduction in recon�guration

time and overhead. Also, Chau's scheme requires 2

n�m

nm more switches as compared to

this scheme to achieve the same level of reliability while using the same number of spares per

module. Assuming the reliability of a node to be r, the reliability of this scheme is calculated
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as follows:

R

FTBB

=

k

X

i=0

 

m+ k

i

!

r

m+k�i

(1 � r)

i

(4)

R

sys

= R

2

n�m

FTBB

(5)

In the second technique, recon�guration is done using a two-phase routing algorithm. In the

�rst phase, the message is routed to the destination FTBB, i.e. the FTBB which contains the

destination node. In the second phase, the message is routed to the destination node within

that FTBB. It is assumed that the failure of a node is the failure of the processor, the router

and the links of the node. It is also assumed that the spare which replaces a failed node inherits

its address. The routing algorithm is distributed and requires only the neighbours of the faulty

nodes to know about the faults. These two techniques can be used to tolerate node failures

only. The failure of any active node can be replaced by only two spare neighbouring nodes in

the same module, compared to more spare nodes using Rennels's scheme. This achieves better

system reliability on the expense of the cost of the many spare nodes added to the system.

Another scheme using fault-tolerant modules (FTMs) is proposed by Yang et al [98]. In this

scheme, spare nodes in a fault-tolerant module can be used as local spares to replace the faulty

nodes in the fault-tolerant module or as remote spares to replace the faulty nodes in other

fault-tolerant modules via spare sharing links. Each module contains 2

m

active nodes and p

local spare nodes. An Internal Switching Connector (ISC) connects 2

m

out of a total of 2

m

+ p

nodes in each FTM to form an m-cube topology. The FTMs are interconnected using (n�m)

External Switching Connectors (ESCs) per module. To provide global sparing, the 2

n�m

FTMs

are also connected as a ring to allow the idle local spares in one module to be used by another.

An FTM with k (p < k � 2p) faulty nodes can use it's own local spare nodes as well as the

remote spares supplied from other FTM's to replace the faulty nodes. Thus, the fault-tolerance

capacity of each FTM is improved, and the overall system reliability is enhanced. Node as well

as link failures are tolerated in this scheme. Hai and Abd-El-Barr [1, 3] have suggested another

fault-tolerant hypercube architecture. In this architecture, the basic block can be a 3�cube,

in which a spare node has been embedded. This spare node is connected to all the eight

primary nodes through spare links. Yang and Wu proposed a fault-tolerant Boolean nCube

architecture [99]. To keep the system topology unchanged, spares are used, including nodes,

links, and switches for recon�guring a faulty hypercube. A basic fault-tolerant module is �rst
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constructed, then the proposed network is designed by connecting the basic modules through

several extra switches and links. The new design required 2

p

spares to tolerate 2

p

faulty nodes.

To reduce the cost, multistage interconnection networks are used instead of crossbar switches

for recon�guration. The system reliability is also compared with other hardware approaches.

Dutt and Hayes [41] presented an approach for designing fault-tolerant hypercubes using

graphs. The approach they presented is based on graph automorphisms and is applicable to

any graph structure and any degree of fault tolerance. The scheme presented is amenable

to low-cost switch implementations. Lee and Hayes [63, 64] simpli�ed the recon�guration

scheme by modifying the hypercube with the addition of spares and links to improve its fault

tolerance, while maintaining a speci�ed level of performance. They used the scalability property

of hypercube architecture to tolerate faults gracefully by con�ning a program to a fault-free

subcube. Only processor failure is considered. The design increased the node degree as the

hypercube size increased, but provided a simpler recon�guration process.

There are many other proposals for providing fault tolerance in hypercube based architecture,

without the use of spares. A design for fault-tolerant hypercube multiprocessors is presented

by Lati� [61]. The degree of connectivity is increased by augmenting the hypercube topology

with some extra links. The new network is constructed from the original hypercube by adding

spare links between each node and its farthest node. Subcube reliability is evaluated using a

node-failure model based on the Markov chain. The extended network contains more subcubes

than the original network. Therefore, task allocation and processor utilization becomes more

e�cient with the proposed hypercube network. Enhanced hypercubes are introduced by Tzeng

and Wei [90]. The extra connections are utilized to improve the inter-node distance, diameter

and tra�c density. The diagnosibility of the enhanced hypercubes is studied by Wang in [92].

Folded hypercubes and their performance and properties are presented in [43].

The major disadvantage of all of these approaches is the extra hardware added to the hypercube,

and currently none is available in the marketplace. This extra hardware is introduces by adding

redundant nodes and/or redundant links.

2.2 Software Approach

The inherent redundancy in hypercubes makes them more robust than other architectures.

[78]; in fact, at least n faults are needed to disconnect an n-dimensional hypercube. Thus, the
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symmetry and robustness of hypercubes can be exploited to tolerate faults, without adding

extra nodes and links. The price of this robustness is that by assigning the task of the faulty

node to some other node, there must be some degradation in computation performance and/or

communication performance.

Peercy and Banerjee have proposed a distributed table-�lling method for routing in faulty hy-

percubes [70]. These tables are used to �nd the shortest path from source to destination. The

tables are modi�ed dynamically and each node searches its n neighbors to �nd the shortest

path. Table-routing methods for one-to-all broadcasting are also presented, and the modi�ca-

tions necessary to make the algorithms deadlock-free are explained. The table-�lling algorithm

presented for routing executes in O(n

3

logn) and the one for broadcasting runs in O(n

2

logn)

worst case time. Even though no extra hardware is added to the hypercube structure, the

execution time and the storage needed for storing the tables do not make these algorithms

practical. The design of a software recon�guration strategy for hypercube multicomputer ar-

chitectures under multiple faults is presented in [71]. The proposed approach is based on the

idea of using multiple virtual processors on a single physical processor and redistributing the

work of the faulty processors to other active processors, thus supporting graceful degradation.

Centralized algorithms running on the host computer are assumed for recon�guring a hyper-

cube in the presence of multiple failures. After the algorithm is completed and the paths are

determined, the fault status information is relayed to the host and passed to the fault-free

nodes.

An approach for achieving fault tolerance using the inherent redundancy of hypercubes without

requiring additional spare nodes or links is presented in [74, 75]. The concept of free dimension

is introduced and used; a dimension is said to be free if no pair of nodes across that dimension

link is faulty. Free dimensions are used to partition the hypercube into subcubes such that

each subcube contains, at most, one faulty node. Two algorithms to �nd free dimensions are

presented. The �rst one is executed in a distributed manner to handle any f < n faults in O(n)

steps. The second algorithm, executed in some central processor, takes O(f

2

+n) steps, but can

be applied to any number of faults. Using the free dimension concept, a scheme is proposed for

tolerating any (f < n) faults. The hypercube is partitioned into two subcubes along some free

dimension. Two copies of the task graph are embedded; one copy in each subcube. For the two

nodes that are assigned to the same task, at least one node is fault-free by the concept of free

dimension. Even though this approach does not use additional spare nodes or links, it loses
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50% of the hypercube performance by having two copies of the task graph in two subcubes.

Moreover, global information about faulty nodes is required, and the recon�guration algorithms

presented took at least O(n) steps. Other software approaches to achieve fault-tolerance when

executing application tasks in hypercubes are presented in [59, 89].

An algorithm for tolerating faulty nodes in hypercubes is presented in [4, 9]. The algorithm

is based on using general spanning trees for recon�guring the hypercube to avoid faulty nodes.

For recon�guration and recovery, a number of assumptions are made [6, 8, 11, 12, 101, 102]

(these are typical in relation in fault tolerance of hypercubes):

� No failure can occur during the recon�guration process.

� The detection of faults can be done by any appropriate software or hardware techniques.

When a fault exists in a processor (i.e., it cannot perform the correct computation), all

the neighbors of the faulty processor will recognize the situation.

� When a node fails, it will be disconnected without a�ecting the operations of other nodes.

� The root is fault-free or supported by a spare.

� Total node failure (i.e. the processor can handle neither communication, nor computa-

tion).

� A copy of the task assigned is kept in the parent node, so that if the processor fails, its

parent can take over its task.

The algorithm consists of two phases: the �rst phase involves the construction of the spanning

tree, the second is for recon�guring the hypercube should a faulty node be detected. The

recon�guration process introduced consists of two basic steps. First, the faulty node is dis-

connected from the spanning tree. Then, a new spanning tree is constructed by reconnecting

the children of the faulty node to the spanning tree. The same algorithm can be generalized

to work for the recon�guration of multicomputer networks in general in the presence of faults.

Two more algorithms are presented in [4, 5, 7]; one uses completely unbalanced spanning trees

(CUST) and the other uses balanced spanning trees (BST). Both algorithms require, at most,

one used link and one unused link for every reconstructed path in the recon�gured hypercube.

To illustrate this, assume that node 6 is detected to be faulty (i.e. f=00110) as shown in Figure
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10. Using the normal hypercube de�nitions, the children and the parent of the faulty node f

are found to be: Children(f) = f01110,10110g and parent(f) = 00010. The recon�guration

process de�nes a new parent for the children of the faulty node. For the child c = 01110,

the method used de�ne a new parent to be: newparent(01110) = 01010, and for the child

c = 10110, it is: newparent(10110) = 10010. So now node 00010 (i.e. parent(00110)) can

take over the task of the faulty node 00110, since it has a copy of it, and it can communicate

with the children of the faulty node using the reconstructed paths. The reconstructed path to

node 01110 is 00010 ! 01010 ! 01110 and to node 10110 is 00010 ! 10010 ! 10110. The
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Figure 10: Recon�gured BST under a faulty node

algorithms are optimal, in terms of the recon�guration time and may increase the congestion

of a link by at most one, with no extra-dilation. Single-fault coverage of 100% and almost

100% fault coverage of double and triple faults are achieved by the proposed algorithms for

hypercubes having a dimension of n � 10. Simulation results for the algorithms under more

than three faults are also presented. Fault coverage and congestion results for up to 60 faults

having di�erent cube sizes are discussed. The major disadvantage of this approach is that the

root node should be duplicated by a spare and exchanging copies between nodes may take a

long time.

The major advantage of the software approach is that no hardware modi�cation is needed

for the hypercube, therefore enabling its use on commercially available hypercubes. On the
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other hand, the disadvantage is a performance degradation. The drawback of the approach

that �nds a maximal fault-free subcube and uses it to run the parallel application is the great

reduction in systems performance due to a few faults. The cost e�ectiveness of the two di�erent

strategies for fault-tolerant hypercubes is analyzed and compared in [49]. The fault model

used for comparing a degradable hypercube to a non-degradable hypercube assumes partial

node failure only. In a non-degradable hypercube, spare processors are added to the system.

In this case, the faulty processor is replaced by one of the spares using a switching mechanism.

In the second strategy, no spares are added to the system, and if a processor is detected to

be faulty, the execution continues with one less processor. The minor cost of the degradable

hypercube is found to outweigh its performance degradation. The numerical results obtained

suggested that the degradable hypercube is more cost e�ective and, hence, it better exploits

the available hardware, relative to the non-degradable hypercube. This suggests that the

hypercube architecture is su�ciently robust, and adding redundant hardware would not be the

most e�ective way of tolerating faults in hypercubes.

3 Evaluation of Reliability

Evaluations of performance and reliability are important factors when studying the e�ectiveness

of multicomputers. Hypercubes provide cost-e�ective ways for improving a computer system's

performance; therefore, improvement of reliability becomes critical. Improving performance

and increasing reliability are two important issues for all multicomputer networks. Reliability

of a distributed processing system can be described by the reliability of links and processing

elements, and the redundancy of programs and data �les. In designing computer networks

with a large number of components, one is interested in maximizing inter alis the reliability.

Evaluation of the reliability of a hypercube is essential for its usability in critical applications.

Several models for evaluating the reliability of hypercubes have been presented in the literature.

Here we discuss �rst the reliability analysis of networks and distributed systems in general.

Then we describe some of the research reported about reliability of hypercubes in particular.

3.1 Reliability of Multicomputers

It is very important to evaluate the reliability of any multicomputer system in order to achieve

a reliable high performance system. In this section, some of the work done in the evaluation of
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reliability in general networks is included for interested readers. An algorithm for evaluating

global reliability of a network is presented in [51]. Global reliability is the probability of

existence of a minimal set of links required for a network to remain connected. The global

reliability is found using disjoint spanning trees of the network graph. Reliability analysis in

distributed systems is discussed in [73]. Two reliability measures are introduced: distributed

program reliability and distributed system reliability. Algorithms using a graph approach for

evaluating reliability in distributed systems are presented. Small, not massive, redundancy in

resources is found to be desirable for improving reliability. These two measures are also used to

express the reliability of distributed systems in [28]. Some other related problems, including

the reliability of more than one copy of programs running, the reliability of a program running

from di�erent sites, and the reliability of more than one program running on a system, are

discussed. A graph approach is used to discuss least-reliable networks in [19]. Edge failures

are assumed to be independent and nodes are assumed not to fail.

3.2 Reliability of Hypercubes

The �rst work in evaluating reliability in hypercubes is done by Abraham and Padmanabhan

in [2]. They proposed a subcube reliability model for �nding a working (n � 1)-cube in an

n-cube. The ability of �nding a d-cube in a hypercube with faulty components is investigated.

Expressions for the reliability and mean time to failure of a d-cube system are found for sev-

eral conditions. These conditions include node failures only, link failures only, and both node

and link failures. The hypercube structure is destroyed by any component failure; however,

the hypercube is nevertheless found to be capable of supporting tasks requiring smaller sub-

cubes. Constructing parallel paths between subcubes is considered in [29]. Alternative paths

can be used to enhance reliable broadcasting in hypercubes. Reliability of redundant-path

interconnection networks is studied in [91].

Two graph theoretical results for the reliability analysis of the hypercube network are presented

in [100]. Here it is assumed that all nodes are perfectly reliable, and that all links may fail

independently with the same probability. The number of spanning trees of the hypercube

is found and used to compute the reliability function. The two extreme cases for the link

failure rate, close to zero and close to one, are considered. The number of links needed to

disconnect the network is also calculated. A new model for reliability evaluation of hypercube
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multicomputers is presented in [57]. The model is based on the decomposition principle, where

the hypercube is decomposed into smaller hypercubes until the reliability of the smallest cube

is found. Here it is assumed that the failure rate of the links is negligible and that the nodes

have an exponential distribution failure rate. Moreover, a host processor is assumed to perform

detection and maintenance actions.

A spanning tree approach for evaluating hypercube reliability is presented in [54]. The paper

evaluates the reliability of hypercubes as a function of link reliability, based on the the recursive

decomposition of the network. An approach for improving the reliability of communication in

hypercubes by adding redundant links to the structure is presented in [62]. This approach

is not practical because of the cost of the extra hardware introduced to the system. Subcube

reliability is evaluated using a node-failure model, based on the Markov chain, in [61]. However,

the hypercube topology is modi�ed by augmenting extra links. In [37, 38, 55], a task-based

dependability model is used to evaluate subcube dependability and hypercube availability. This

model uses the probability of having j connected nodes out of x working nodes in a hypercube.

The problem of determining the exact reliability of hypercubes is know to be computationally

hard. Bulka and Dugan [20] present a lower bound on the NR of an n-cube recursively as

computed from a lower bound on the reliability of two component (n-1)-cubes. Let NR(n,p)

denote the NR of an n-cube (C

n

) with link reliability p. They use a C

2

as the basic cube for

which the exact reliability is given as follows:

NR(2; p) = 4p

3

(1 � p) + p

4

(6)

The reliability of a C

n

is calculated from the reliability of a C

n�1

. The C

n

is decomposed into

two congruent C

n�1

s such that each node in one C

n�1

is connected by an exterior link to its

congruent node in the other C

n�1

. There are 2

n�1

exterior links interconnecting the nodes in

the C

n�1

s. The links within each C

n�1

are termed interior links. The BD approach computes

the reliability of a C

n

by computing the probability of three disjoint cases of working and failed

(n� 1)-cubes and exterior links.

Case 1: Both (n� 1)-cubes are operating and i exterior links operate, 1 � i � 2

n�1

� 2.

T1 = NR(n � 1; p)
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n�1
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i
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n�1
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Case 2: Atleast one (n-1)-cube is operating, and one exterior link has failed. The node at the

endpoint of the failed link in the non-operating C

n�1

is linked to atleast one of its neighbours

by an interior link.

T2 = [2:NR(n � 1; p)(1 � q

n�1

)�NR(n � 1; p

2

)]� 2

n�1

p

2

n�1

�1

q

Case 3: All 2

n�1

exterior links operate . Let p

0

= p

2

+ 2pq.

T3 = NR(n � 1; p

0

)p

2

n�1

The lower bound on the NR of the n-cube is then:

NR(n; p) = T1 + T2 + T3 (7)

This analysis can be combined with complementary analyses to get more accurate models of

the system without the need for very complicated models. The same approach can also be used

to analyze the reliability of any other network, assuming that only links are subject to failure.

Chang and Bhuyan [26] study the problem of subcube allocation in faulty hypercubes. A

divide-and-conquer technique is used to form the set of disjoint subcubes in the faulty hyper-

cube. The subcube partitioning method proposed can tolerate up to

n

2

faults while maintaining

a fault-free (n� 1)�cube in a faulty n-cube. It is also shown that a fault-free (n�m� 1)-cube

can be found in case of 2

m

:(

n�m

2

+ 1) + 2

m�1

� 1 or fewer faults. A probability fault model is

developed in [25] to derive an exact expression for the (n � 1)�cube reliability in an n-cube.

Subcube reliability is de�ned as the probability that a subcube of a speci�ed size is available

in the system. Given that the reliability of a single node is p in an n-cube, the reliability of an

(n� 1)�cube is found to be:

R

n;n�1

=

n

X

i=1

(�1)

i�1

S

n

n�i

p

N�2

n�i

+ (�1)

n

p

N

(8)

where S

n

n�i

is the number of (n� i)�cubes in an n�cube, which is equal to :

2

i

:(

n:(n� 1):(n� 2):::::(i+ 1)

(n� i)!

): (9)

Even though, some approximate analysis to �nd the m�cube reliability for 1 � m � n � 2

is given, it remains an open problem to �nd the exact reliability expressions for subcubes of
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size smaller than n � 1 in an n-cube. Most of the results reported about the evaluation of

hypercube reliability assume restricted models, without considering all reliability parameters,

such as failure rate, recovery rate, repair rate, and coverage factor. In [4, 10], an approach

based on fast recon�guration algorithms using spanning trees, for improving the reliability of

hypercubes, is presented. It is shown that, with a fast recon�guration algorithm, the system

recovers more quickly, improving hypercube reliability. A dependability evaluation study, based

on a Markov chain model for a cluster of four hypercube nodes, is presented. This paper does

not assume link failure only as done in [54, 100]. Instead of needing a separate host processor

to perform the recon�guration, as proposed in [57], a recon�guration algorithm is used to

improve hypercube reliability. The inherent redundancy of the hypercube structure is used

to improve reliability compared to introducing extra redundant links to the structure of the

standard hypercube, which is done in [61, 62]. The reliability approach presented in [4] can

also be used for evaluating the dependability of multiprocessor systems in general.

4 Fault Tolerant Routing

The performance of multicomputers is highly dependent on the communication method and

the message routing scheme used. Processors (or nodes) in a hypercube communicate with

each other by passing messages. The large number of processors that are provided by current

hypercubes increase the probability of failure in the system. Therefore, fault-tolerant routing

is important for achieving highly dependable computing.

Two basic routing strategies exist for routing messages in multicomputers, static routing and

dynamic routing. In static routing, messages are routed along a static (i.e. �xed) path de�ned

before the computation starts. The path taken by a message is determined by the source-

destination pair without considering the network state. This kind of routing is also called

oblivious or deterministic routing [102]. It does not use the bandwidth e�ectively, and mes-

sages may be blocked even if alternative paths exist. This is similar to centralized routing in

[67]. In dynamic routing, the routing of messages makes use of the alternative paths between

communicating processors. For a given source and destination, the path taken depends on the

network state taking care of the faulty and congested channels. This routing makes e�cient use

of the bandwidth, providing more fault tolerance. This kind of routing is also called adaptive

routing [102] and is similar to distributed routing [67].
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In multicast routing [84, 85], messages are sent from the source node to destination nodes in

a tree-like pattern. To reduce the length of the multicast path, path-like routing is presented

in [67], where the destination nodes are divided into several subsets and the source message

is sent using separate multicast paths. Unlike tree routing, path-like routing does not need to

replicate messages at each intermediate node. In store-and-forward routing, a message is sent

as a whole packet, and deadlock can be prevented by using properly structured bu�ers [68].

In wormhole routing, messages consist of a sequence of 
its (e.g. words). If the header 
it is

blocked in one channel during the routing process, the node sending the header does not bu�er

the whole message and the blocked message remains in the network [67, 68]. As a result, the

progress of messages is stopped in the tree, causing more congestion. Because the tree-like

routing model is not suitable for multicast routing in wormhole networks, a multicast star

wormhole routing model is presented in [67]. Two deadlock-free methods, which reduce the

communication tra�c using that model, are presented. As the 
its of the message are pipelined

in the channels in wormhole routing, the network latency is reduced and almost independent

of the length of the path [68]. In store-and-forward routing, the number of bu�ers grows with

network size. However, the number of queues grows with the number of channels in the network

[68]. Pipelined-circuit-switching is similar to wormhole routing, except that the data 
its do not

follow the header immediately, but wait until an acknowledgment is received by the source node

[47]. Virtual-cut-through routing is like wormhole routing except that the blocked messages are

bu�ered, removing them from the network. Forwarding of 
its in virtual-cut-through routing

depends on the intermediate node and the routing information [47]. The nCUBE 2 system

[69] adopts wormhole routing (tree-like) and supports multiple node addresses in the address

�eld of the message.

Dally and Seitz [36] proposed a deadlock-free, message routing algorithm that uses the concept

of virtual channels: groups of channels that share a physical channel with a separate queue for

each virtual channel. Deadlock is avoided by removing the cycles of the channel dependency

graph by splitting physical channels into groups of virtual channels. The concept of virtual

channels is extended to multiple virtual communication systems in [68] to provide fault tol-

erance and adaptability. Chen and Shin [31, 32] propose a distributed adaptive fault-tolerant

routing scheme for faulty hypercubes in which each node needs to know the conditions of its

own links. The proposed scheme cannot tolerate more than n faults using depth-�rst search

and network delay tables. A deadlock-free routing scheme in faulty hypercubes with worm-
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hole routing capability is proposed by Kim and Shin in [58]. The scheme is based on the

re-establishment of a routing path to the destination and dose not guarantee the shortest path.

It uses either wormhole routing or staged routing, depending on the availability of one or more

healthy (n � 2)-cubes within the faulty hypercube. In case the system cannot �nd a healthy

(n � 2)-cube, then if the message encounters a faulty node, it is sent to the node in the al-

ternative path found with a depth-�rst search. Routing decisions are made in a decentralized

manner. Chiu and Wu [33] adopt the concept of an unsafe node to �nd those nodes that might

cause routing problems. Each node is required to contain its local state information, and a

routing algorithm is proposed making use of the state information. The algorithm guarantees

routing the message when either the source or the destination of the message is a safe node.

The issue of freedom from deadlock is addressed, but the algorithm cannot handle more than

n� 1 faults.

Kim and Das analyze hypercube communication delay with a deadlock-free wormhole routing

scheme [56]. The model they present can handle any type of message destination distribution.

The tra�c density and the message delay are analyzed. They assume that any number of

messages can be received by any node. The results presented show some agreement with

simulation results. The routing problem in faulty supercubes is discussed in [81]. An algorithm,

which does the routing when the number of faulty nodes is less than the node connectivity,

is presented. The properties of incomplete hypercubes [53] in the presence of node failures

are also studied. It is assumed that in the faulty condition, each fault-free node knows the

identity of all the faulty nodes. Other fault tolerant routing algorithms for hypercubes can also

be found in [48].

5 Fault Tolerant Embedding

The importance of the problem of tree embedding is motivated by the fact that many parallel

algorithms, including parallel pre�x, broadcasting, and divide-and-conquer algorithms have a

natural tree structure. The problem of embedding and recon�guration of binary trees in hyper-

cubes has also been studied by many researchers [30, 42, 46, 76, 93, 94, 101]. Because both the

hypercube and the complete binary tree can be de�ned recursively, embedding complete binary

trees in faulty hypercubes in a recursive manner is described. The ability of the hypercube to

implement tree-structured algorithms in the presence of faults is examined in [94]. The paper
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proves an upper bound on the number of faults that can be avoided when a natural class of

embedding techniques is used.

The ability to embed large binary trees in smaller hypercubes by increasing the congestion of

the nodes is discussed in [42]. The ability to tolerate node failures with minimum slowdown

in executing binary tree algorithms is also addressed. The fault-tolerance schemes presented

are based on �nding a replacement processor at a di�erent level of the tree. Two types of

embedding are discussed: recursive embedding, where the congestion is increased by extending

the basis in the construction with appropriate edges, and inorder embedding, where larger trees

are embedded in smaller cubes by using the concept of folding. Embedding and recon�guration

of binary trees in faulty hypercubes is also discussed in [101]. It is assumed that the location of

faulty nodes is known and no more than n faults can be tolerated. The concept is based on the

concept of free-dimension, explained earlier. Using this approach, two distributed schemes for

embedding and recon�guring binary trees in faulty hypercubes are provided. The �rst scheme

is recursive embedding, in which the maximum size binary tree is found. This scheme can

obtain an n-level dilation 2 binary tree with 2

n

� f � 1 nodes. The second scheme cannot

tolerate more than n�1 faults with expansion 2 dilation 2 initial embedding and constant task

migration time. The recon�guration scheme is executed in a distributed manner. If a node

becomes faulty, one of its neighbours is designated to initialize the recon�guration process. The

problem of �nding (n� 1)-binary trees in faulty hypercubes is studied in [30]. A way to �nd a

fault-avoiding binary tree, in which each node has exactly two or zero sons, is presented. The

general problem of determining if a k-tree exists when a number of nodes are removed from

the hypercube is found to be NP-complete; however, it is shown in [30] that an (n� 1)-tree is

guaranteed to exist if no more than n� 1� logn nodes are removed from the hypercube. The

paper assumes that all faults are globally known by the fault-free nodes. A distributed scheme

for recon�guring binary trees in faulty hypercubes is presented in [102]. The concept of free

dimension, explained earlier, is generalized to the concept of degree of occupancy, which is the

number of pairs of faulty nodes that occupy a dimension. A dilation 3 expansion 2 scheme,

which can recon�gure round any 3n=2 faults with O(n) recon�guration time, is presented. The

scheme assumes (1) the partial fault model with global knowledge of faulty nodes and (2) the

existence of a fault detection algorithm.

The hypercube is not only suitable for tree embedding, but also for embedding many other

networks, such as a linear array, grids, and general meshes. The problem of assigning points
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from a two-dimensional grid to hypercube nodes with at most one grid point per node, is

addressed by Chan and Chin in [23]. A result about minimal mesh embedding in binary

hypercubes is presented in [79]. Embedding of grids into optimal hypercubes is also addressed

by Chan in [22]. Gupta and Hambrusch consider the problem of embedding multiple networks

into a k-dimensional hypercube such that the dilation and congestion are minimized [50].

In general, the problem of embedding trees or graphs into hypercubes is found to be NP-

complete. Two heuristics for solving this problem are presented in [95]. In general, the

problem of tree and graph embedding is not easy. The problem of minimizing dilation, when

the host graph is a line (bandwidth minimization), is NP-complete even when the source graph

is a binary tree [46]. It is proved in [83] that there exist polynomial time algorithms that

determine whether a graph can be embedded into a complete binary tree with �xed dilation or

�xed congestion. The results show that the problem of minimizing dilation is harder than the

problem of minimizing congestion.

6 Reliable Broadcasting

Reliable broadcasting and e�ective utilization of communication resources are very important

for good performance in multicomputers. Broadcasting is also useful in many linear algebra

algorithms, such as matrix multiplication and Gaussian elimination. The problem of broad-

casting information in a hypercube in which links fail independently with �xed probability

is considered in [34]. Messages may be directly transmitted to adjacent nodes only, and

every node may communicate with, at most, one neighbor in a given unit of time. Nodes are

assumed to be fault-free and communication between adjacent nodes is assumed to be bid-

irectional. The broadcasting algorithm is adaptive and does not require a central monitor to

supervise the broadcast scheme. The algorithm requires O(logn) expected time and makes

O(n) expected number of transmissions. A broadcasting algorithm that sends multiple copies

of the message to all nodes in the hypercube using a disjoint path is presented in [72]. The

proposed algorithm does not require information about the identity of the faulty processors.

The idea of the algorithm is that the node that wants to broadcast the message sends it to

its neighbours �rst, and then each neighboring node broadcasts the message using a doubling

algorithm. The proposed approach can tolerate up to n � 1 faults in n + 1 steps, assuming

that all outgoing links of a node can be used at the same time. Broadcasting algorithms,
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based on di�erent types of spanning trees [52] in incomplete hypercubes, are presented in

[88]. Packet switching with both one-port and all-port communications are considered. With

one-port communication, the best algorithm is found to have an optimal bandwidth utilization

within a factor of less than or equal to two. For all-port communication, an optimal algorithm

is found for bandwidth utilization. Various algorithms for reliable broadcasting and gossip-

ing in faulty hypercube multicomputers are described and analyzed in [45]. Fault-tolerant

broadcasting algorithms, using the same approach used in [72] by sending multiple copies of

a message through disjoint paths, are constructed. The same approach is also used to develop

a fault-tolerant gossiping algorithm for hypercubes. It is assumed that the communications

are based on message-passing procedures in a store-and-forward mode. Links are assumed to

be bidirectional, and every node is able to communicate through all its ports simultaneously.

Communication under the whispering mode, where each processor can only use one port at a

given time, is also considered. No information on the identity of the faulty units (nodes or

links) is required. The proposed algorithms are asymptotically optimal when the lengths of

the messages went up, and optimal when the messages are short.

Wu and Yao have studied the problem of multicasting in injured hypercubes with faulty nodes

[96, 97]. Their method is based on limited global information captured by the safety level.

The safety level associated with a node is a measure which approximates the number of faulty

nodes in the neighbourhood. An algorithm for calculating the safety level and for updating

it for each node in the hypercube is used. The proposed algorithms are applicable to injured

hypercubes with up to n� 1 faulty nodes. An address-sum based multicasting method, using

the distribution of destination nodes and safety levels of neighbouring nodes, is discussed.

Simulation analysis for the tra�c generated for the algorithms is conducted. Message routing

in an injured hypercube is also studied in [24]. The all-to-all reliable broadcasting problem is

addressed in [65]. Here a general method for performing such broadcasting in an interleaved

manner is proposed. The broadcasts from nodes are interleaved in such a way that no two

packets contend for the same link at any time. The method is found to be useful for systems that

use virtual cut-through or wormhole routing. The algorithm assumes that all links adjacent

to a node can be used at the same time. Several other virtual cut-through solutions and a

store-and-forward solution are compared to the proposed method. The algorithm is found to

minimize the execution time and can be used for a large class of interconnection networks.
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7 Future Directions and Open Problems

Massively parallel computers using thousands of processors are becoming more feasible as a

result of advances in technology. This survey has addressed some important issues related

to fault tolerance and reliability of hypercubes. It also reveals a number of future research

directions for fault tolerance and reliability of multicomputers in general. The techniques

described here can also be applied to other connected networks, such as multibutter
ies, meshes,

fat-trees, and de-Bruijn networks. Thus, it is expected that ideas presented in this paper

may contribute to the development of new recon�guration algorithms for other multicomputer

systems.

The algorithms presented in [6] for recon�guration of spanning trees in faulty hypercubes

may also be investigated for decreasing the tra�c generated by using multiple paths and in-

creasing the time needed for delivering messages. They can also be used to introduce e�ective

fault-tolerant broadcasting algorithms. These algorithms will use the redundant paths in the

hypercube, instead of generating multiple copies of the same message and sending it through

alternative paths to enhance fault tolerance. This might lead to algorithms that minimize the

execution time of one-to-all and all-to-all reliable broadcasting.

Traditionally, reliability analysis for complex systems has been a challenging problem because

of the unknown size and nature of the state space. There have been several attempts of

approximating the reliability of hypercubes or improving its lower bounds; however, there are

no known polynomial time algorithms for exact computation of terminal reliability or network

reliability for the hypercubes. Even though some approximate analysis to �nd the m�cube

reliability for 1 � m � n � 2 has been given, it remains an open problem to �nd the exact

reliability expressions for subcubes of size smaller than n � 1 in an n-cube. Evaluation of

terminal and network reliability in other multicomputer networks is an open area of research

that needs more investigation.

In general, the problem of embedding trees or graphs into hypercubes is found to be NP-

complete; however, some heuristics for solving the problem can be considered, like those

presented in [95]. A lot of research has been done on fault tolerance of binary tree em-

bedding; however, more research will be needed for adding fault tolerance to the other tree

embeddings in hypercubes.
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8 Conclusions

Massively parallel computers, using thousands of processors, will be the future trend for pro-

ducing tremendous computational power. As the probability of any one or more processors

failing in such a complex system is large, building some fault-tolerance feature into them be-

comes extremely important. Fault tolerance in highly parallel computers is important for

achieving high-performance reliable computing. The problem of tolerating faulty processors or

links in hypercubes has been studied by many researchers, either by using spares or by recon-

�guration. This paper is mainly a chronological survey of fault tolerance and related issues of

hypercube-based multicomputers. Several important issues related to fault tolerance of such

multicomputers have been addressed, unfolding a number of future research directions for fault

tolerance and reliability of multicomputers in general.
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