
A Prefetching Technique for Object-Oriented

Databases

Technical Report ECS-CSG-28-97

Nils Kna
a

Dept. of Computer Science, University of Edinburgh

�

January 10, 1997

Abstract

We present a new prefetching technique for object-

oriented databases which exploits the availability of

multiprocessor client workstations. The prefetching

information is obtained from the object relationships

on the database pages and is stored in a Prefetch Ob-

ject Table. This prefetching algorithm is implemen-

ted using multithreading. In the results we show

the theoretical and empirical bene�ts of prefetching.

The benchmark tests show that multithreaded pre-

fetching can improve performance signi�cantly for

applications where the object access is reasonably

predictable.

Keywords: prefetching, distribution, object-oriented

databases, performance analysis, multithreading,

application access pattern, storage management

1 Introduction

Two industry trends in the performance/price ra-

tio of hardware systems have implications for the

e�cient implementation of object-oriented database

management systems (OODBMSs) in a client/server

computing environment. Firstly, the continuing

fall in price of multiprocessor workstations means

that such machines are cost e�ective as client hosts

in OODBMSs. Secondly, although the perform-

ance/price ratios of both processors and disks are

improving, the rate of improvement is greater for

processors. Hence, the disk subsystem is emerging as

a bottleneck factor in some applications. Recent ad-

vances in high bandwidth devices (e.g. RAID, ATM

networks) have had a large impact on �le system

throughput. Unfortunately, access latency still re-

mains a problem due to the physical limitations of

�

JCMB, King's Buildings, Edinburgh EH9 3JZ, UK,

Tel.: +44 131 650 5962, Fax: +44 131 667 7209, Email:

nk@dcs.ed.ac.uk

storage devices and network transfer latencies.

In order to reduce access latency database systems

cache pages in the bu�er pools of both the client

and server. Prefetching is an optimisation technique

which reads pages into the database bu�er before the

application requests them. A successful prefetching

technique is dependent on the accuracy of predicting

the future access. If accuracy is high, performance

can be improved due to the high cost of a page fetch.

If accuracy is poor, the performance can actually

decrease due to cache pollution, channel congestion

and additional workload for the server.

The fate of OODBMSs will largely depend on their

performance in comparison to relational databases.

The simple tabular structures of relational data-

bases and the set-at-a-time semantics of retrieval lan-

guages such as SQL make it easy to parallelise rela-

tional database servers. However, in an OODBMS

the structures are complex and typically the retriev-

als chase pointers. Furthermore, in most OODBMSs

the bulk of the processing occurs on the client. To

our knowledge the only commercial database that

uses prefetching to load a whole object tree in ad-

vance is GemStone. Using information on the object

structure for prefetching could signi�cantly improve

the performance of OODBMSs.

In this report, we present a new prefetching tech-

nique for page server systems. The prediction in-

formation is obtained from the object structure on

the database pages and is stored in a Prefetch Ob-

ject Table (POT) which is used at run time to start

prefetch requests. We implemented this technique in

the EXODUS storage manager (ESM) [1]. We also

incorporated Solaris threads into ESM to have the

application thread and the prefetching thread run-

ning on di�erent processors in the client multipro-

cessor.

In section 2 we give a classi�cation of related work

in the area of prefetching. Section 3 describes the

design of the POT and a bu�er replacement strategy.

1



The system architecture of ESM and prefetching is

described in section 4. In section 5 we present the

results of the performance tests. Finally, in section 6

we conclude the work and give ideas for future work.

2 Related Work

The concept of prefetching has been used in a vari-

ety of environments including microprocessor design,

virtual memory paging, compiler construction, �le

systems, WWW and databases. Prefetching tech-

niques can be classi�ed by many dimensions: the

design of the predictor, the unit of I/O transfer in

prefetching, the start time for prefetching, or the

data structures for storing prediction information.

The design of the predictor is very important to allow

prefetching to obtain high accuracy whilst minimi-

sing overhead for the prediction decision. Predictors

can be further classi�ed as strategy-based, training-

based or structure-based.

Strategy-based prefetching is used internally (One

Block Lookahead) (OBL) [9] or explicitly by a pro-

grammer's hint [14]. In the Thor [12] database, an

object belongs to a prefetch group. When an object

of this group is requested by the client, the whole

object group is sent to the client.

Training-based predictors use repeated runs to ana-

lyse access patterns. Fido [13] is an example that

prefetches by employing an associative memory to

recognise access patterns within a context over time.

Data compression techniques for prefetching were

�rst advocated by Vitter and Krishnan [17]. The

intuition is that data compressors typically operate

by postulating a dynamic probability distribution on

the data to be compressed. This distribution is used

for prediction. In the area of microprocessors, Lee

and Smith [11] designed a branch-prediction table

which is a small associative memory that retains the

addresses of recently executed branches and their

targets.

Structure-based predictors (mostly used in OOD-

BMSs) obtain information from the object structure.

Chang and Katz's technique [3] predicts the future

access from the data semantics in terms of inherit-

ance and structural relationships, e.g. con�guration

and version history. An Assembly operator for com-

plex objects to load sub-objects in advance was intro-

duced by Keller [10]. The traversal was performed

by di�erent scheduling algorithms (depth-�rst and

breadth-�rst).

In object-oriented databases the unit of I/O is an

object (Object Server) or a page (Page Server). An

object server prefetches an object or a group of ob-

jects ([3], [4]) and a page server prefetches one or

more pages ([5], [7]). Another possible classi�cation

of prefetching is the time factor. Smith [16] pro-

posed two policies: (a) prefetch only when a bu�er

fault occurred (demand prefetch), (b) prefetch at any

time (prefetch always). Prediction information must

be e�ciently stored on disk and accessed in memory.

This information can be stored in tables ([7], [8], [11])

or Markov-chains ([5], [13]).

3 The Prefetching Design

3.1 Prefetch Object Table

OODBMSs can store and retrieve large, complex

data structures which are nested and heavily in-

terrelated. Examples of OODBMS applications are

CASE, CAD, CAM and O�ce automation. These

applications consists of objects and relationships

between objects containing a large amount of data.

A typical scenario is laid out by the OO7 bench-

mark [2]. It comprises a very complex assembly

object hierarchy and is designed to compare the

performance of object-oriented databases. A key

component of the benchmark is a set of composite

parts. Each composite part has an associated graph

of between 20 to 200 atomic parts. The higher-level

design is an assembly hierarchy made up of com-

plex assemblies at the top (which point to other as-

semblies) and base assemblies at the bottom (which

point to composite parts). There are seven levels

in the assembly hierarchy. The whole hierarchy re-

quires 11 MB in the small database and 103 MB in

the medium database on disk.

In a page server, like ESM, objects are clustered into

pages. Good clustering is achieved when references

to objects in the same page are maximised and ref-

erences to objects on other pages are minimised.

The general idea of our technique is to prefetch ref-

erences to other pages in a complex object structure

net (e.g. OO7). Considering the object structure in

a page, we identify the objects which have references

to other pages (Out-Refs). One page could possibly

have many Out-Refs but sometimes it is not possible

to prefetch all pages because of time and resource

limitations. Instead, we follow the application pro-

cessing of the object structure. We know which ob-

jects have Out-Refs and when we identify that the

application is processing towards such an Out-Ref-

Object (ORO) the Out-Ref page becomes a candidate

for prefetching.

The prefetch starts when the application encoun-

ters a so-called Prefetch Start Object (PSO). Al-

though the determination of OROs is easy, determ-

ining PSOs is slightly more complicated. There are

two factors that complicate �nding PSOs:

1. Prefetch Object Distance (POD)

2



For prefetching a page it is important that the

prefetch request arrives at the client before ap-

plication access to achieve a maximum saving.

The POD de�nes the distance of n objects from

the PSO to the ORO object which is necessary

to prefetch a page early enough to �nish the re-

quest before access. Let C

pf

denote the cost of a

page fetch and let C

op

denote the cost of object

preparation. The cost of object preparation is

the ESM client processing time before the app-

lication can work on the object

1

. Then POD is

computed as follows:

POD =

C

pf

C

op

If the prefetch starts before the POD, a maxi-

mum saving is guaranteed, however, if it starts

after the POD, but before access, there is a lower

saving (see section 5.2).

2. Branch Objects

a

b c

d e

Page 1 Page 2

Page 3

Figure 1: Object relationship

Fig. 1 shows an example of a complex object

with 2 references. The application might access

the root object a and then objects b and c. Then

it appears that the application will follow this

chain to page 2. In this case we would de�ne ob-

ject b and d as the PSOs because they are the

�rst objects after the branch. When object b is

accessed then page 2 is a candidate for prefetch-

ing, otherwise when object d is accessed page 3

is the candidate. This object branch technique

reduces the number of adjacent pages to pre-

fetch.

From the de�nition of PSOs, the branch objects are

responsible for what to prefetch (page ids) and the

POD is responsible for when to prefetch. This de-

cision is always made on the individual case of the

object structure. Sometimes a compromise between

the two is needed, e.g. either prefetch right on time

with lower accuracy (because an important branch

object was not passed yet) or prefetch after the ob-

ject distance with higher accuracy (a branch object

1

Additionally we could use the expected amount of pro-

cessing from the application

was passed but there is not enough time to �nish

before access). The order of the prefetch requests is

determined by the shortest path to OROs: urgent

pages are prefetched earlier.

Each page of the database is analysed o�-line, �rstly

to �nd the ORO and then to determine the PSO.

The Analyser stores this information in the POT.

Entries for a page are stored together and accessed

by a hash table in memory. The overhead for this

table is quite low because it only contains only a few

objects from the page.

The POT is not only useful for complex objects, it

can also be used for collection classes (linked list,

bag, set or array) in OODBMSs. Normally the app-

lication works with a cursor on collections. With

PSO and ORO it would be possible to prefetch the

next page at the right time. It is important in our

technique that the object size is smaller than the

page size. If not, prefetching can be used to bring

the whole object into memory.

3.2 Replacement Policy

In the ESM client it is possible to open bu�er groups

with di�erent replacement policies (LRU and MRU).

Freedman and DeWitt [6] proposed a LRU replace-

ment strategy with one chain for demand reads and

one chain for prefetching. We also use two chains

with the di�erence that when a page in the demand

chain is moved to the top of the chain, the prefetched

pages for this page are also moved to the top. The

idea of this algorithm is that when the demand page

is accessed, it is likely that the prefetched pages are

accessed too. If a page from the prefetch chain is

requested it is moved into the demand chain.

4 System Architecture

4.1 The EXODUS Storage Manager

For the evaluation of the prefetching technique we

chose ESM to implement this idea. The EXODUS

Client/Server database system [1] was developed at

the University of Wisconsin. It aids a database im-

plementor in the task of generating a DBMS by

providing a storage manager, a programming lan-

guage E (an extension of C++), a library of access-

method implementations, a rule-based query opti-

miser generator, and tools for constructing query-

language optimisers.

The basic representation for data in the storage ma-

nager is a variable-length byte sequence of arbitrary

size, incorporating the capability to insert or delete

bytes in the middle of the sequence. In the simplest

case, these basic storage objects are implemented

3



as contiguous sequences of bytes. As the objects

become large, or when they are broken into non-

contiguous sequences by editing operations, they are

represented using a B-tree of leaf blocks, each con-

taining a portion of the sequence. Objects are refer-

enced using structured OIDs.

On these basic storage objects, the storage manager

performs bu�er management (LRU or MRU), con-

currency control, recovery, and a versioning mech-

anism that can be used to provide a variety of

application-speci�c versioning schemes. Transac-

tions are implemented using a shadowing and log-

ging technique. Client and Server communicate via

the socket interface. The client speci�es the reques-

ted data in a message structure and sends it to the

server. The server updates this structure and re-

sponds with the attached 8K page.

We did not make any changes to the software in order

to get a fair comparison of the demand version with

the new prefetching version.

4.2 The Prefetching Architecture

Server

Client
Buffer pool

Buffer pool

Network

P
r
e
f
e
t
c
h
 
T
h
r
e
a
d

S
u
p
p
o
r
t
 
T
h
r
e
a
d

POT

P
r
e
f
e
t
c
h

L
i
s
t

A
p
p
 
T
h
r
e
a
d
 
 
 
 
 
 
 

Figure 2: Architectural Overview

In this section we describe how prefetching is incor-

porated into ESM. For the concurrent execution of

the application and the prefetch system we use the

Solaris thread interface. Multithreading combined

with prefetching has the bene�ts of:

1. Increased application throughput and respons-

iveness;

2. Performance gains from multiprocessing hard-

ware (parallelism);

3. E�cient use of system resources.

As depicted in �gure 2, the database client is multi-

threaded. The AppThread is responsible for the pro-

cessing of the application program and the Prefetch-

Thread is responsible for fetching pages in advance

into the bu�er pool. A SupportThread has the same

task as the PrefetchThread with the only di�erence

being that it is scheduled by the PrefetchThread.

Each thread has one associated socket. The POT

informs the PrefetchThread which pages are candi-

dates for prefetching from the current processing of

the application. The Prefetch List is a list of pages

which are currently prefetched.

At the beginning of a transaction the AppThread re-

quests the �rst page from the server by a demand

read. The PrefetchThread always checks which ob-

jects the AppThread is processing. Having obtained

this information, it consults the POT for a page to

prefetch and checks if this page is not already res-

ident. If not, the page is inserted in the Prefetch

List and the request is sent to the server. The server

responds with the demanded page and the client in-

serts the page in its bu�er pool. Eventually the page

is removed from the Prefetch List and inserted into

the hash table of the bu�er pool.

If the POT predicts multiple pages, SupportThreads

help the PrefetchThread; this is useful when the pre-

fetch object distance is short. The number of Sup-

portThreads is determined by the number of sim-

ultaneous prefetch requests. Each SupportThread

runs on its own LWP

2

and while one SupportThread

blocks on I/O another SupportThread can insert its

page into the bu�er pool.

When the AppThread requests a new page, it �rst

checks if the page is in the bu�er pool. If the page is

not resident then it checks the Prefetch List. If the

page has been prefetched the AppThread waits on a

semaphore until the page arrives, otherwise it sends

a demand request to the server.

The ESM server is not multithreaded

3

and performs

each request sequentially. But the server forks a new

process for the disk management. The server and

disk manager communicate via shared memory. The

server puts a request for a new page in a disk queue

2

Lightweight process (LWP) can be thought of as a virtual

CPU that is available for executing code

3

But ESM runs many tasks sequentially at the same time

on one processor.

4



Parameter Havra Papa

SPARCstation 20 Model 612 10

Main Memory 192 MB 224 MB

Virtual Memory 624 MB 515 MB

Number of CPUs 2 4

Cycle speed 60 MHz 50 MHz

Table 1: Computer performance speci�cation

Parameter Craro Faither

SPARCstation 20 Model 502 ELC (4/25)

Main Memory 512 MB 24 MB

Virtual Memory 491 MB 60 MB

Number of CPUs 2 1

Cycle speed 50 MHz 33 MHz

Table 2: Computer performance speci�cation

and the disk manager reads the page from disk and

copies it into the bu�er pool of the server. Incorpo-

rating threads into the server would further improve

the whole system performance and is part of future

work.

For the parallel execution of threads synchronisation

mechanisms are required. The access to the bu�er

pool is protected by mutexes, which means that only

one thread at a time is able to make a residency check

or manipulation. When either the AppThread or

PrefetchThread are idle they wait on a semaphore. A

condition variable

4

informs the SupportThread that

there is a page to prefetch.

5 Performance Evaluation

5.1 System Environment

For the ESM server we need a machine (called

Havra) con�gured with a large quantity of shared

memory and enough main memory to hold pages in

the bu�er pool. To take full advantage of multi-

threading we chose a four processor machine (called

Papa) for the client. Table 1 presents the perfor-

mance parameters of the machines. For some other

tests on the client we used the machines in Table 2.

The network is Ethernet running at 10Mb/sec. The

disk controller is a Seagate ST15150W (performance

parameters in table 3).

4

A synchronisationvariable that allows the users to specify

arbitrary conditions on which to block

Parameter Disk controller

External Transfer Rate 9 Mbytes/sec

Average Seek (Read/Write) 8 msec

Average Latency 4.17 msec

Table 3: Disk controller performance

5.2 Theoretical Results

The success of prefetching is dependent on the ac-

curacy of the prediction and the completion of the

prefetch before access. We de�ne the cost of object

processing to be C

o

. Let C

op

denote the cost of pre-

paring one object for application access and let C

oa

denote the cost of processing on the object from the

application plus waiting time. C

o

is calculated by:

C

o

= C

op

+ C

oa

The saving for one out-going reference, S

or

, is de-

pendent on the number of objects between the

start of the prefetch and application access to the

prefetched object (N

o

) and the cost of prefetching a

page (C

p

):

if (C

o

� N

o

� C

p

)

S

or

= C

p

else

S

or

= C

o

� N

o

If there is enough processing (C

o

� N

o

) to overlap

then the saving is the cost of a page fetch. If not,

there is also a lower saving of the amount of pro-

cessing from prefetch start to access (C

o

�N

o

). Pages

normally have many out-going references. The num-

ber of references to di�erent pages is denoted by n.

S

p

, the saving for a whole page, is given by:

S

p

=

n

X

i=1

S

or

(i) (1)

Finally, the saving of the total run is de�ned by S

r

which is in
uenced by the cost of the thread mana-

gement (C

t

), by the cost of the socket management

(C

s

) and by the number of pages in the run (q):

S

r

= (

q

X

j=1

S

p

(j))� C

t

� C

s

(2)

In our performance test we measured the run times

for the demand version (RT

d

) and for the prefetching

version (RT

p

). The savings are computed as follows:

5



CPU Page Fetch Savings in percent

10 2 17 %

2 2 50 %

Table 4: Savings in percent

savings =

RT

d

�RT

p

RT

d

� 100 (3)

But the percentage of savings is always dependent

on the amount of processing required on the page.

For example in table 4 a page fetch costs 2 time

units. With 10 CPU time units the saving is only

17 % but with 2 CPU time units the saving is 50 %.

Therefore we should use a more accurate formula to

compute savings in percent. T

sp

is the saved time

with prefetching and T

p

is the total time of all page

fetches:

savings =

T

sp

T

p

� 100 (4)

We did not use this formula as it requires a more

complicated measurement technique.

5.3 Performance Measurements

For the evaluation of the prefetching technique we

created a benchmark with complex objects. The

structure of the benchmark should be complex with

many relationships between objects, but not too

complex for comprehension. Every object in the data

structure has two pointers to other objects. Most of

the objects point to another object in the same page;

only one object in a page has two pointers to two dif-

ferent pages. Having this object structure, the pages

are connected like a tree. The size of one object is

64 bytes which gives space for 101 objects in one 8K

page. In one run 200 pages are accessed (equal to

the size of the bu�er pool at the client and server).

The application reads only one object from the �rst

faulted page and then all objects from the second

faulted page. Every object is fetched into memory

with no computation or waiting time on the object.

All time measurements are in real time. We also

measured CPU time but this does not include the

user or system waiting time. Although the tests were

made in a multi-user environment the workload of

the machines and the network was low. The results

of the benchmark are dependent on the workload

of the machines: using busy machines and networks

would increase the page fetch latency. Since there

were di�erent workloads during the tests, it is not

possible to compare the absolute times in di�erent

tests. In �gures 4b to 8 the savings in percent are

the savings of the prefetching version compared with

the demand version times.

In �gure 3 we compared the cost of one prefetch

request to processing 101 objects in a page. The

processing time of 61 milliseconds is about 5 times

higher than the time to prefetch one page which took

11 milliseconds. Most of the processing is due to an

audit function that calculates the slot space of the

page. Expensive components of the prefetch request

are the waiting time until the page arrives from the

server and the subsequent reading of the page from

the socket into memory. The waiting time is depend-

ent on the network speed, the disk access from the

server and the workload of the server.

In �gure 4a and 4b we present the results of our

benchmark. The tests on the client side were

made on the four processor machine Papa, the two

processor machine Craro and on the uniprocessor

Faither. The server runs on the two processor ma-

chine Havra. The prefetching version is always faster

than the demand version. The best result was made

on the slow Faither machine because of its longer

network connection and slower access to the socket.

Papa has the same cycle speed as Craro but a higher

saving. Craro and Papa have in opposition to Faither

two processors or more, allowing threads to run on

di�erent processors concurrently. This would be

more bene�cial with more prefetch requests at the

same time. In this test every prefetch is done with

100% accuracy to see the maximum speedup of pre-

fetching.

As mentioned in section 5.2 the saving of prefetching

is dependent on the percentage amount of processing

of the application. Having 101 objects on one page,

we compared the run-time savings under varying ob-

ject access rates from the application (from 10 ob-

jects to 100 objects accessed). Figure 5 shows the

highest saving is with an object access of 20 because

the object processing cost is almost equal to the page

fetch cost. For the access of 10 objects there is not

enough CPU overlap for prefetching. Increasing the

number of objects gradually decreases the savings.

When two pages have to be prefetched under strong

time restrictions such that there would only be

enough time to prefetch one page successfully, we use

SupportThreads to prefetch simultaneously. We com-

pared di�erent prefetch object distance parameters

to see under which conditions more SupportThreads

are useful. The number of SupportThreads is de-

pendent on the number of prefetch requests (in our

test there is only one SupportThread). In �gure 6

we can see that the savings get higher as the pre-

fetch object distance gets smaller. The maximum

speedup of 7.85 is with a distance of 1 because both

pages are urgently needed and prefetched in parallel.

With a distance of 10 the saving is only 6.9. Under

no time restrictions, additional prefetch threads pro-

6



duce more overhead and are not useful.

The application fetches all objects by OID into

memory without any processing on the objects or

any waiting time. Also a pointer swizzling technique

is necessary for real applications to translate the OID

into a virtual memory pointer. All this would pro-

duce more processing overhead for the client. We

simulate this overhead with a loop after every object

fetch and called it Inter-Reference Time (IRT). The

results in �gure 7 show that with more processing

the savings in percent gets smaller. This is because

the application is more and more dominated by CPU

processing (as explained in section 5.2).

In the last test we studied the impact of wrong

prefetches. Normally a wrong prefetch is not a seri-

ous problem when there is enough time and enough

resources to make another prefetch in parallel com-

puting. At the client both prefetch threads can run

concurrently. The only problem is the increased

workload for the server and the network. In this run

we fetched 100 wrong pages from 200 page fetches.

The other important parameter is the prefetch ob-

ject distance. We used the distance of 1, 20 and 100.

Recall that we always fetch 2 new pages from one

page (now one correct and one incorrect page). The

distance of 100 is su�cient to do a wrong prefetch,

the distance of 20 is critical to do one prefetch right

on time and with the distance of 1, the prefetch is

always late. Figure 8 shows the best result of 27 per-

cent savings with a distance of 100, but even with a

distance of 1 there is still a saving of almost 4 per-

cent.

6 Conclusions and Future Di-

rections

In this report we presented a prefetching technique

for complex object relationships in a page server.

The object structure of the database is analysed and

stored in a Prefetch Object Table. During the run

time of the application, this table is consulted to

make the right prefetches on time. We used the ob-

ject pointers to make predictions for future access.

If the application follows such an object reference

chain, we know the object that points to an ob-

ject in the next page therefore making this page a

candidate for prefetching. We also use the branch

information of the complex relationships to predict

the next pages as accurately as possible. If there are

more prefetches to do at the same time we use more

threads to get all prefetches before the application

requires access.

In the implementation and performance tests we

evaluated the prefetching technique. The prefetch-

ing version was 14% faster on the Papa machine,

nearly 9% faster on Craro and 18% faster on Faither.

Reducing the number of accessed objects in a page

increases the savings. With an access of 20 objects

in a page we achieved a saving of 45%.

If the objects are clustered on a page with only a few

out-going pointers, prefetching can close this gap of

clustering. If objects are not clustered together very

complex relationships with many out-going pointers,

prefetching could increase running time because of

the bad prediction possibilities. Our technique is es-

pecially useful for complex objects with longer object

chains and the collection classes of OODBMSs.

This work will be continued in several directions.

Firstly, we will look at the object structure of real

applications to see how our technique will perform.

We will test di�erent levels of complexity with vary-

ing numbers of Out-Refs. If the application makes

many updates of pointer references we will evaluate

how this e�ects the performance of POT. Also we

will implement our bu�er management algorithm to

test repeated access to pages. Another possibility is

to make the ESM server multithreaded. The prob-

lem is the synchronisation of the threads to access

global data concurrently and safely. For example if

many threads want to access the bu�er pool wait-

ing time will be increased. Concurrency control is

another problem to be solved as we must avoid too

many pages being locked at the client.

References

[1] M. J. Carey, D. J. DeWitt, G. Graefe,

D. M. Haight, J. E. Richardson, D. T. Schuh,

E. J. Shekita, and S. L. Vandenberg. The

EXODUS Extensible DBMS Project: An Over-

view. In S.B. Zdonik and D. Maier, editors,

Readings in Object-Oriented Database Systems.

1990.

[2] M. J. Carey, D. J. DeWitt, J. F. Naughton. The

OO7 Benchmark. [15].

[3] E. E. Chang and R. H. Katz. Exploiting In-

heritance and Structure Semantics for E�ective

Clustering and Bu�ering in an Object-Oriented

DBMS. In Proceedings of the ACM SIGMOD

Conference on the Management of Data (Port-

land, Oregon, May-June 1989).

[4] J. R. Cheng and A. R. Hurson. On the Per-

formance Issues of Object-Based Bu�ering. In

Proc. First International Conference on Parallel

and Distributed Information System (Dec. 4-6,

1991, Miami Beach, Florida. IEEE Computer

Society Press, December.

[5] K. M. Curewitz, P. Krishnan, and J. S. Vit-

ter. Practical Prefetching via Data Compres-

sion. [15].

7



[6] C. S. Freedman and D. J. DeWitt. The SPIFFI

Scalable Video-on-Demand System. In Proceed-

ings of the ACM SIGMOD/PODS95 Joint Con-

ference on Management of Data (22-25 May

1995, San Jose, CA).

[7] C. A. Gerlhof and A. Kemper. Prefetch Support

Relations in Object Bases. In Persistent Ob-

ject Systems. Proceedings of the Sixth Interna-

tional Workshop on Persistent Object Systems

(Tarascon, Provence, France, 5th{9th Septem-

ber 1994).

[8] K. S. Grimsrud, J. K. Archibald, and B. E. Nel-

son. Multiple Prefetch Adaptive Disk Caching.

IEEE Knowledge and Data Engineering, 5(1),

February 1993.

[9] M. Joseph. An analysis of paging and program

behaviour. The Computer Journal, 13(1), Feb-

ruary 1970.

[10] T. Keller, G. Graefe, and D. Maier. E�cient

Assembly of Complex Objects. In Proceedings

of the ACM SIGMOD International Conference

on Management of Data (Denver, USA, 1991).

ACM.

[11] J. K. F. Lee and A. J. Smith. Branch Prediction

Strategies and Branch Target Bu�er Design.

IEEE Computer, 17(1), January 1984.

[12] B. Liskov, A. Adya, M. Castro, M. Day,

S. Ghemawat, R. Gruber, U. Maheshwari,

A. C. Myers, L. Shira. Safe and E�cient Sharing

of Persistent Objects in Thor. In Proceedings

of the ACM SIGMOD/PODS96 Joint Confer-

ence on Management of Data (3-6 June 1996,

Montreal, Canada).

[13] M. Palmer and S. B. Zdonik. Fido: A Cache

That Learns to Fech. In Proceedings of the

Seventeenth International Conference on Very

Large Data Bases (Barcelona, Catalonia, Spain,

3rd{6th September 1991).

[14] R. H. Patterson and G. A. Gibson. Exposing

I/O Concurrency with Informed Prefetching. In

3rd International Conference on Parallel and

Distributed Information Systems (Austin, Texas

September 1994). IEEE Computer Society.

[15] Proceedings of the ACM SIGMOD International

Conference on Management of Data (Washing-

ton, USA, 1993).

[16] A. J. Smith. Sequentiality and Prefetching in

Database Systems. ACM Transactions on Data-

base Systems, 3(3), September 1978.

[17] J. S. Vitter and P. Krishnan. Optimal Pre-

fetching via Data Compression. In Proceed-

ings 32nd Annual Symposium on Foundations

of Computer Science (1-4 Oct. 1991, San Juan,

Puerto Rico). IEEE Computer Society Press.

8



Fig. 3 Cost of Clientprocessing and Pagefetch

61003

11577

0
20000
40000
60000
80000

Processing Pagefetch

M
ic

ro
s
e
c
o

n
d

s

Fig. 4a Demand and Prefetch version

8.93 7.65 8.61 7.84

30.61
24.92

0

20

40

Papa D Papa P Craro D Craro P Faither D Faither P

S
e
c
o

n
d

s

Fig. 4b Savings in Percent 

14.28
8.94

18.58

0
10
20

Papa Craro FaitherS
a
v
in

g
s
 i
n

 

p
e
rc

e
n

t

Fig. 6 Savings with 2 prefetch threads

7.85 6.9 5.95 5.24
0

10

0 5 10 15 20 25 30

Prefetch Object Distance

S
a
v
in

g
s
 i
n

 

p
e
rc

e
n

t

Fig. 5 Savings in percent with different object access rates

32.61

45.59

32.2
25.84 22.9 21.37

0

10

20

30

40

50

10 20 40 60 80 100

Objects in access

S
a
v
in

g
s
 i
n

 p
e
rc

e
n

t

Figure 3:

9



Fig. 7 Savings under different IRT

22.75
18.68

8.76

0

10

20

30

0 1000 10000

Inter-Reference-Time

S
a
v
in

g
s
 i
n

 p
e
rc

e
n

t

Fig. 8 Fetching 100 wrong pages

3.97

18.36
27.76

0

10

20

30

1 20 100

Prefetch Object Distance

S
a
v
in

g
s
 i
n

 

p
e
rc

e
n

t

Figure 4:

10


