
Computer Systems Group

Design Issues for Latency Hiding on an Access Decoupled

Machine

by

Graham P. Jones and Nigel P. Topham

CSG Report Series CSG-33-97

Computer Systems Group November 1997

Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ



Design Issues for Latency Hiding on an Access

Decoupled Machine

Graham P. Jones

�

and Nigel P.Topham

y

Technical Report CSG-33-97

Department of Computer Science

University of Edinburgh

November 9, 1997

Abstract: Future software and hardware technologies will try to provide improved per-

formance by extracting higher levels of parallelism. However the cost of a main memory

access - in terms of missed instruction slots - increases with faster processors and greater

issue widths. For this reason latency hiding technology remains one of the most impor-

tant parts of high performance processor designs. In this paper we investigate a latency

hiding technique known as Access Decoupling which partitions a program into two sep-

arate instruction streams in order to aggressively prefetch data.

We justify a renewed interest in Access Decoupling in two ways. Firstly as a latency

hiding technique and secondly as a solution to the problem of hardware complexity in

large issue width, out-of-order superscalar architectures. We show that in comparison

to a single instruction stream architecture Access Decoupling is marginally more e�ec-

tive at hiding memory latency and capable of achieving higher performance through its

simpler design.

After providing our justi�cation for renewed interest in the decoupling paradigm we

quantify the performance impact of di�erent hardware/software design issues on Access

Decoupled machines. We consider the e�ect of restrictions imposed by data depen-

dency analysis, renaming, memory reordering, operation reordering, issue width and

1



synchronisation points on IPC and latency hiding e�ectiveness.

Keywords: Access Decoupling, Design Issues, ILP, Latency Hiding, Superscalar, Out-

of-Order Execution

1 Introduction

Access Decoupling is a latency hiding technique which partitions a programs - statically or

dynamically - into two separate instruction streams in order to aggressively prefetch data.

The instruction streams are loosely coupled with one stream, executed on an Address Unit

(AU), prefetching data for the second stream, executed on a Data Unit (DU). Provided the

two streams can slip su�ciently memory accesses can be pipelined to tolerate large memory

latencies.

In this paper we justify a renewed interest in the use of Access Decoupling by looking at

the bene�ts a�orded by using this form of asynchronous data prefetching. It is our belief that

decoupling could be used to address two major problems in high performance out-of-order

(o-o-o) superscalar design:

� The need to hide relatively longer memory latencies

A consequence of larger issue widths and the increasing gap between memory and pro-

cessing speeds is the higher performance hit of o�-chip accesses. As processors aggregate

dispatch rates increase the future trend will be to provide more aggressive prefetching

techniques to hide memory latency. Access Decoupling, which prefetchs data as aggres-

sively as the run-time state of the machine permits, is a natural choice.

� The increasing hardware complexity of superscalar architectures

�

email: gxj@dcs.ed.ac.uk

y

email: npt@dcs.ed.ac.uk

2



For superscalar architectures to provide greater performance the instruction widths and

reordering windows will have to increase. This will require greater hardware complexity

for instruction selection and wake-up logic in the instruction window. This complexity

will increase delays in the timing for issuing instructions and a�ect processor clock

speeds. A recent study on window logic complexity has shown that delays increase

quadratically with instruction window size and issue width size [13].

One solution is to use separate \microclusters" as in the Alpha 21264 [9] each with it

own register �le and function units. Microclusters can share a single or have separate

instruction windows. Access Decoupling, with its dual instruction streams, is a variant

of this solution. It o�ers the bene�t of smaller reordering window size and issue width

coupled with the dynamic reordering of operations between the AU and DU.

In section 6 we demonstrate the performance payo�s between using a single instruction

stream (SIS) and dual instruction stream (DIS). The results show that although the SIS

achieves higher instructions per cycle (IPC) on average it requires larger instruction windows

and issue widths.For these reasons we believe there is a need to reexamine the design issues

for an Access Decoupled machine.

This paper is part of a larger study into the use of the decoupling paradigm for high

performance systems. The experimental methodology behind this study has been to move

from an ideal position, in which resources are unlimited and dependencies can be resolved

perfectly, to more realistic case studies. This paper represents a selection of those case studies.

In section 4 we identify those hardware/software design issues we believe are critical to the

performance of the decoupled machine. In section 7 we explore the parameter space for each

one of these issues.

We also discuss the latency hiding e�ectiveness and scalability of Access Decoupling. We

de�ne the latency hiding e�ectiveness as E = T

perfect

=T

actual

where T

actual

is the execution

time for our Access Decoupled machine and T

perfect

is the execution time for a machine with

3



perfect latency hiding in which each memory access perceives a single cycle latency. We de�ne

the scalability of access decoupling as the variation of latency hiding e�ectiveness with issue

width.

In section 2 we discuss some of the previous work on access decoupling and the microclus-

ters. In section 3 we outline our Access Decoupled architecture and in section 5 we describe

the benchmarks and the simulation technique used in the experiments. In the �nal section

we discuss the �ndings in the paper and the future work it suggests.

2 Background

Access decoupling is an asynchronous data prefetching technique which tries to hide memory

latency by overlapping computation and memory access operations. Central to all decoupled

machines [2, 5, 12, 19] is an architecturally visible address unit (AU) and data unit (DU); these

units are responsible for performing, respectively, the memory accesses and data computations

in a program. They each have their own program counter allowing the AU to run ahead of

the DU. The degree to which the AU is ahead of the DU is called the slippage. The units

communicate with each other and with memory via queues.

The early decoupled machines like the ZS-1 [5] and PIPE [12] di�ered in how they split the

instruction stream. The ZS-1 had a single instruction stream with a splitter whereas PIPE

had separate instruction caches for the access and execute unit. The ZS-1, unlike PIPE, also

included a data cache. More recently decoupled machines like the DAE [2], MISC [17] and

ACRI [4] have appeared. To increase slippage DAE includes specialised hardware for e�cient

address generation. This hardware is e�ective at reducing DU stall time and increasing cache

utilisation. The MISC [17] architecture, derived from PIPE, has four asynchronous units

each with their own instruction cache but common data cache. The ACRI machine included

an additional control unit responsible for computing conditional branches and dispatching

instructions to the AU and DU.

4



Decoupling has gained currency in superscalar architectures like the MIPS R10000 [20].

The R10000 is able to support a decoupled mode of operation through o-o-o execution and a

separate access instruction queue. The R10000 can decouple address and execute operations

even though there is no architecturally visible AU and DU.

3 The Access Decoupled Machine

The Access Decoupled machine modelled in our experiments is shown in �gure 1. The machine

is based on previous decoupled architectures like the ZS-1 and PIPE. The machine consists of

two separate out-of-order (o-o-o) superscalar processors, the Address Unit (AU) and the Data

Unit (DU), responsible for executing the access and data operations. The extent to which

access and data operations may be reordered is determined by the hardware and software

con�gurations discussed in section 4.

Each unit has is own separate instruction window, functional units and register �les. The

units can pass results to each other via a bypass mechanism. The number of instructions

issued per cycle is determined by the issue width. We refer to the sum of the AU and DU

issue width and the combined issue width (CIW).

The decoupled memory lies between the AU and DU and the rest of the memory system.

The decoupled memory receives addresses from the AU and sends them to the memory sys-

tem. When a referenced value is returned the decoupled memory bu�ers the value until it

is requested by the DU. Requests from the decoupled memory take a single cycle. AU self

loads are executed in a similar way. Previously the decoupled memory has been implemented

through the use of queues [2, 12, 5]. Part of the reason for our work is to consider if this is

the most suitable structure for asynchronous data prefetching when memory operations may

be executed o-o-o.

The basic memory system consists of the main memory but may also be composed of �rst

or second level caches. We are not concerned with a detailed simulation of the memory system;

5



instead we model its execution by considering every access to have a �xed cost. The �xed cost

we refer to as the memory di�erential (MD). The memory di�erential is the di�erence in time

between a register and memory system access. The purpose of all latency hiding techniques

is to eliminate the any perceived memory di�erential.

Instruction

Window

Instruction

Window

Function Units + 

Register Files

Function Units + 

Register Files

Issue

Width

Issue

Width

DUAU

Memory System

Decoupled Memory

Bypass

Figure 1: Access Decoupled Machine

4 Hardware and Software Design Issues

In this section we describe the hardware and software con�gurations considered in this paper.

Our aim is to identify those features of hardware and compiler technology which enhance the

the latency capability of an access decoupled machine. Previous work has already looked at

the e�ect of queue sizes on a decoupled machine [5]. For this reason we chose to investigate

hardware and software issues which e�ect the ordering of operations and hence the degree of

slippage between the AU and DU. The modality of our architectural model are dependency

analysis, renaming, memory reordering and instruction reordering scope.

� Data dependency analysis. There has been much research into the importance

of precise inter and intra procedural data dependency analysis for program perfor-

6



mance [10, 14, 15]. In this study we examine the lower and upper bound for any data

dependency technique. We refer to these bounds, respectively, as conservative analysis

(CTA) and perfect analysis (PFA). The di�erence between them lies in how they handle

array references

{ In PFA dependency arcs exist between references to the same element of an array.

{ In CTA dependency arcs exist between any pair of references to the same array.

� Renaming. False dependencies occur because of the imperative and sequential nature

of some programming languages. These languages allow the programmer to reuse the

same memory location. All false dependencies can be removed by the introduction

of new variables e.g. by array privatisation [7]. In our experiments we examine the

behaviour of Access Decoupling without and without renaming.

� Memory ordering. The order in which memory accesses are sent to memory e�ects

the amount of reordering that can take place between memory references. The three

memory ordering schemes we consider are :-

1. Strong Ordering (STO) : Loads and Stores occur in program order there is no

reordering of memory operations. This is the simplest case requiring no additional

hardware or software complexity.

2. Semi Strong Ordering (SSO): Loads/stores preserve their program order with other

loads/stores. Loads and Stores can reorder relatively to each other. In order to

preserve 
ow dependencies this ordering scheme requires additional hardware for

dynamical memory disambiguation

1

. This hardware is simpli�ed by the SSO

because the logic need only compare a load address against all stores issued since

the last load.

1

Preserving false dependencies is contingent on the use of memory renaming

7



3. Weak Ordering (WKO): Loads and stores can reorder with any loads and stores in

the program, but loads and stores to the same location occur in program order.

This is requires the most complex complex hardware. The logic must be capable

of comparing all loads against all issued but not yet completed stores.

� Reordering Scope. The compiler may restrict the reordering that takes place between

operations by inserting barriers into the instruction streams. All instructions occuring

prior to a barrier complete before the barrier complete and all instructions after the

barrier must be issued after completion of the barrier. We refer to the distance between

two barriers as the reordering scope. We consider 7 cases

RS0 : No out of order execution.

RS1 : Operations can reorder between di�erent iterations of leaf level loops but not

across procedure call boundaries. Operations outside leaf level loops can reorder

within basic blocks.

RS2 : Operations can reorder between di�erent iterations of leaf level loops. Operations

outside leaf level loops can reorder within basic blocks.

RS3 : Operations can reorder between di�erent iterations of nested loops but not across

procedure boundaries. Operations outside nested loops can reorder within basic

blocks.

RS4 : Operations can reorder between di�erent iterations of nested loops. Operations

outside nested loops can reorder within basic blocks.

RS5 : Operations can reorder within the same procedure.

RS6 : No restrictions of reordering.

� Synchronisation points. The barriers placed in the AU and DU instruction streams

can be either synchronisation or non-synchronisation barriers. Both barriers enforce

8



the normal barrier semantics within an instruction stream. However the synchronising

barrier imposes an additional constraint that the AU must wait on the DU before issuing

any further introductions. This barrier introduces false loss of decouplings (LOD) events

into the program. Non-synchronising barriers allow the AU to retain some slippage

ahead of the DU.

5 Benchmark and Simulation Technique

5.1 Simulation Technique

In our experiments we used a technique adapted from work by Petersen [14] and described

in [11]. The technique works by annotating the source level code with calls to routines within

the architecture simulator. Shadow variables are inserted into the program to track the earliest

time that program values become available. Each program variable has an associated shadow

variable to track it throughout the execution. Shadow variables are passed as arguments

to the simulator to enable operation start times to be computed. Simulation of the Access

Decoupled machine can then be performed by executing the annotated program

2

.

The bene�t of using this approach is that the program can be simulated at the source level.

This means we can concentrate on the high level semantics of access decoupling without

bringing in issues of assembly code generation. It allows us to simulate the e�ect of data

dependency techniques, renaming and reordering scope whilst remaining independent of any

particular native compiler.

The splitting of the code between the AU and DU was performed statically by the par-

titioning algorithm in the OCTAVE compiler [16]. This compiler assigns each node in the

data 
ow graph to one or both units. This information is then used to annotate the source

program.

2

Correctness of the annotated code was veri�ed by comparing simulated execution times with results from

Petersen's tool [14]

9



Source level operations are translated at runtime into single instructions for the architec-

ture simulator and executed on the appropriate unit/s. Loads and Stores are executed as

one instruction on each of the units. Integer and address computations have a I cycle cost.

Floating point operations take 5 cycles to complete. There is no speculative execution but

enforcing control dependencies for loop closing branches is dependent on the reordering scope

used (see section 4).

In our simulations we assume unlimited resources for instruction window size, decoupled

memory and register �les. We limit the instruction issue width to realistic and projected

future values. The con�gurations we have discovered to be most suitable for maintaining

maximal throughput are (1,1),(2,3) and (4,5) [?]. The �rst and second value in the brackets

are respectively the AU and DU instruction issue widths.

5.2 Benchmark Programs

We chose a selection of 7 scienti�c Fortran programs from the PERFECT club suite [6] as our

benchmark applications. These were chosen because they represent real applications from the

scienti�c community.

Rather than execute each program in full, which would have been prohibitively expensive,

we adopted a sampling technique. We executed each program in full counting the number

of AU, DU and decoupled load operations during �xed intervals throughout the program.

This enabled us to build a run-time pro�le of the operations executed in each program. From

this pro�le we were able to isolate repeating region from which a representative sample could

be identi�ed. It was then possible to arrange for the simulator to switch on and o� at the

beginning and end of these sampled regions. In this way we were able to simulate selectively

without having to simulate the program in it's entirety.

We selected benchmarks from the PERFECT club to represent varying degrees of vec-

torization and also to span known degrees of decoupling. Table 1 shows the seven selected

10



benchmarks. This table gives the reported proportion of vectorised operations (VO) obtained

from [18] and the decoupling e�ciency (DE) obtained from [16]. The other columns show the

number of AU and DU operations, decoupled loads, do loops and while loops executed in the

program. The table also shows the code expansion due to duplication of operations on the

AU and DU.

Program VO DE Operations (10

6

) Expansion Loops (10

3

)

Name (%) (%) AU (%) DU (%) Loads (%) (%) while do

ADM 43 69 36.5 (51) 34.8 (49) 13.6 (19) 6 0.02 1.1

DYFESM 69 77 19.1 (53) 16.8 (47) 10.6 (29) 3 0 1.1

FLO52Q 92 82 28.0 (54) 24.0 (46) 13.9 (27) 3 0 1.0

MDG 88 92 52.5 (54) 44.1 (46) 20.1 (21) 3 0 5.9

QCD2 4 19 52.7 (55) 43.1 (45) 12.7 (13) 12 0 2.8

TRACK 14 14 9.6 (65) 5.2 (35) 3.2 (21.5) 9 8.5 0.7

TRFD 70 99 53.0 (51) 50.4 (49) 31.6 (31) 2 0 2.1

Table 1: Benchmark Programs from PERFECT club suite

6 Single versus Dual Instruction Streams

Some critics may argue that the level of prefetching of an Access Decoupled machine could

be achieved with an o-o-o superscalar architecture. If this is the case why introduce the

additional complexity of asynchronous instruction streams. The answer we believe lies in

the major di�erence between the performance and hardware complexity of a DIS and SIS.

We believe that smaller window size and issue widths o�ered by decoupled architectures will

allow designers to simplify the instruction window logic, reducing the clock period. In this

section we quantify the instructions per cycles, the latency hiding e�ectiveness and window

size required for the cases of a single and dual instruction streams. The results show that the

reduction in window size is considerable for a small reduction in the IPC.

In order to compare the DIS and SIS we executed the same number of operations on both

11



systems. Although there is some duplication of operations in the case of DIS the increase is

on average small (5.4%) and therefore could be ignored

3

. The programs were executed with

perfect data dependency analysis, renaming, weak ordering and non-synchronising barriers.

Tables 2 and 3 show the average IPC measured for the 7 programs when the reordering

scope was RS3 and RS6 respectively. The tables also show the reduction in IPC for the DIS

and the latency hiding e�ectiveness of the two systems. The column labelled CIW is used to

denote the combined issue width for DIS and the issue width for SIS. We did not consider

any other cases than when the DIS combined issue width is equal to SIS issue width.

It can be seen that in all cases the DIS IPC is lower than the SIS. The reduction in

performance is due to in
exible scheduling during synchronising and startup phases. When

in the DIS system the AU is waiting on a result from the DU it's issues slots are being wasted.

However, for the SIS the full issue width is available at all times. During the startup phase

after a synchronisation point the SIS is able to initiate more accesses whilst the DU waits for

the �rst value to be returned from the memory system. We would expect therefore that as the

number of synchronising points decreases the reduction in IPC would be smaller. This can be

seen in the di�erence between tables 2 and 3 where for a CIW of 9 and memory di�erential of

0 the reduction in IPC has dropped from 9% to 6%. This is due to RS3 reducing the slippage

between the units and hence increasing the number of synchronising points in the program.

The di�erence in IPC also varies with larger CIW. This is due to the fact that when

the CIW is 2 the AU and DU have an issue width of 1, e�ectively serialising the code.

Some reordering will be possible but it will be small. When the CIW is increased to 9 the

improvement in performance due to the extra issue slots available during synchronisation and

startup phases is relatively smaller.

The tables also show that the latency hiding e�ectiveness is always marginally smaller for

the SIS. We believed this is due to the AU having to contend with the DU for issue slots

when both units are busy.

3

In future work we plan to consider the impact of code expansion on our results

12



A large memory di�erential also reduces the performance di�erence between DIS and SIS.

Large memory di�erentials reduce the parallelism in the program and limit the advantage

gained by the SIS system during synchronising and startup phases on the DIS.

In our simulations we allowed the instruction window to have unlimited resources. We

can however compute the average window size needed to achieve the IPC levels and latency

hiding shown in tables 2 and 3. The average window size is estimated using the equation

WS = (MD+1) � (IDPC � IPC)+ IDPC (see �gure 2). For the DIS the window sizes are

shown for both the AU and DU window size. The �nal column shows the di�erence between

the window sizes for the SIS and DIS. The di�erence is computed by subtracting SIS window

size from the maximum of the AU and DU window sizes. Positive �gures denote a reduction

in window size. It will be noticed that in only one case, when the CIW=2 and RS=6 is the

average DIS instruction window size greater than the SIS window size. The results clearly

demonstrate that for the large CIWs (5 and 9) the reduction in window size is between 16%

and 44%. Interestingly, the reduction in window size increases with larger issue width. For a

CIW of 9 the reduction is approximately 44% for both RS3 and RS6.

The execution time of a program is given by the product of the number of operations,

the IPC and the clock speed. Research has shown that delays due to window logic increase

quadratically with instruction window size and issue width [13]. We would anticipate that the

9% to 5% reduction in IPC would be more than compensated for by the simpler issue logic in

the DIS, especially in the case of large issue widths. These �ndings are consistent with a recent

study into an microcluster architecture. The architecture had a single instruction window

steering instructions to seperate microclusters. Each microcluster had its own mulitple FIFO

instruction queues, register �les and functional units [13].

This analysis has been based on average window sizes and does not take into account

window resource constraints. However these are positive results and we postpone a discussion

of the detailed e�ect of resource constraints on window size for later work.

13



The analytical model we have developed views the execution of the instruction

window as a system with input and output rates. The input rate is the number

of instructions decoded per cycle (IDPC) and the output rate is the number of

instructions issued per cycle. If we assume that all instructions can issue once

there operands become available (e.g. there is no conl�ct for issue slots) then

the maximum length of time any instruction will wait in the window is MD+1

cycles. We can therefore estimate the average window size WS = (MD +

1)� (IDPC�IPC)+IDPC. Since most machines tend to have a maximum

decode rate equal to the issue width (IW), we can state that the upperbound

for the average window size is given byWS � (MD+1)�(IW �IPC)+IW .

In our experiments we assume perfect branch prediction so that the inequality

becomes an equality condition in the above equation.

Figure 2: Instruction Window Analytical Model

Instruction CIW Average IPC Latency Hiding

Stream md=0 md=60 E�ectiveness

Single 2 1.86 1.44 77

Dual 2 1.56 1.24 79

IPC reduction (%) 0.3 (16) 0.2 (14)

Single 5 3.93 2.59 66

Dual 5 3.56 2.45 69

IPC reduction (%) 0.37 (9) 0.14 (5)

Single 9 5.97 3.7 62

Dual 9 5.44 3.46 64

IPC reduction (%) 0.53 (9) 0.24 (6)

Table 2: Comparison of Single and Dual Instruction Streams when RS=3

14



Instruction CIW Average IPC Latency Hiding

Stream md=0 md=60 E�ectiveness

Single 2 1.92 1.76 92

Dual 2 1.68 1.55 92

IPC reduction (%) 0.24 (13) 0.21 (11)

Single 5 4.54 4.00 88

Dual 5 4.18 3.74 89

IPC reduction (%) 0.36 (8) 0.26 (7)

Single 9 7.94 6.16 78

Dual 9 7.43 5.87 79

IPC reduction (%) 0.51 (6) 0.29 (5)

Table 3: Comparison of Single and Dual Instruction Streams when RS=6

RS CIW SIS DIS Di�erence

IPC WS AU IPC DU IPC AU WS/DU WS in WS

3 2 1.44 36 0.54 0.70 29/19 7 (19)

5 2.59 152 1.04 1.41 61/100 52 (34)

9 3.70 332 1.45 2.01 160/187 145 (44)

6 2 1.76 17 0.68 0.87 21/9 -4 (-24)

5 4.00 65 1.61 2.13 26/56 9 (14)

9 6.16 182 2.5 3.37 95/104 78 (43)

Table 4: Instruction window size (WS) for Dual and Single Instruction Streams

15



7 The E�ect of Di�erent Hardware and Software Con-

�gurations

Having provided justi�cation for renewed interest in Access Decoupling as way to simplify o-o-

o issue logic, we now quantify the performance impact of the di�erent hardware and software

con�gurations described in section 4. We consider the case when CIW is 9 (AU and DU issue

width of 4 and 5, respectively) because it o�ers the best results for reducing window size. In

section 7.1 we consider di�erent data dependency and renaming con�gurations. In section 7.2

we consider di�erent memory ordering and barrier con�gurations. In each section we quantify

the performance of the con�gurations when the memory di�erential is 0 and 60 cycles. We

choose an MD of 0 cycles in order to isolate the e�ect of the di�erent con�gurations from

memory latency. An MD of 60 was chosen because it is comparable to the cost of a second

level cache miss

4

and it assumes a weak memory system (see �gure 1) capable of capturing

no locality. In practice for a high performance architecture the memory system will be able

to reduce the average access time by using �rst and second level caches. Each section also

discusses the latency e�ectiveness and scalability of the con�guration.

7.1 Data Dependency and Renaming Con�gurations

Figures 3 and 4 show the measured IPC levels for di�erent data dependency analysis and

renaming con�gurations when the MD is 0 and 60 cycles, respectively. The post�x `+rename'

and `-rename' indicates where the con�guration included or excluded memory renaming. The

measurements were made with weak memory ordering and non-synchronising barriers.

The major �nding is that access decoupling can still achieve high levels of IPC even with

large memory di�erentials. When MD is 0 and 60 cycles the IPC upper limits are 7.5 and

5.9, respectively. This means an issue e�ciency of 83% and 66%, respectively. However this

4

The pentium pro has 50 cycle L2 miss latency[3]

16



result requires the use of perfect dependency analysis, renaming and the ability to reorder

operations anywhere in the program (RS6).

The `pfa+rename' con�guration in �gure 3 shows that the large increase in IPC, from RS0

to RS1, occurs as operation reordering within leaf level loops and basic blocks is enabled. After

RS1 the increasing scope for reordering operations provides smaller gains in IPC. The other

signi�cant increase occurs, from RS5 to RS6, when operations are allowed to reorder over

procedure call boundaries.

The di�erence in behaviour of the con�guration with `pfa+rename' in �gures 3 and 4 is

due to the need for wider reordering scope to hide the MD. This can be seen clearly in the

change for RS1. In �gure 3 RS1 has an IPC at 70% of the upper limit of 7.5 IPC. Compare

this with �gure 3 where RS1 is only 37% of the upper limit. The con�guration with `pfa-

rename' exhibits a similar type of behaviour. Wider reordering scope is therefore essentially

for producing higher IPC for both con�gurations with perfect dependency analysis.

We also notice for the con�guration with perfect analysis and renaming reordering oper-

ations across procedure boundaries is important to achieving high IPC when MD=60. This

result can be seen in the large di�erence of 2.4 IPC (40% of the upper limit of 5.9 IPC)

between RS5 and RS6 in �gure 4. Although in �gure 3 the increase is 2 IPC between RS5

and RS6 its signi�cance is less important (27% of the upper limit of 7.5).

The lower bound for any data dependency analysis technique is shown by the con�guration

with `cta-rename' in �gure 3 and 4. We can see that with conservative analysis and no

renaming the scope for reordering operations is not the performance bottleneck. There is

therefore clearly no bene�t to increasing the scope for reordering operations beyond RS1.

The consequence is that for large memory di�erentials the latency can not be hidden and the

IPC drops to 0.5 (see �gure 4).

Renaming for both perfect and conservative dependency analysis only provides additional

IPC for RS3 (barriers at nested loop and procedure boundaries) and above. The reason for

this we can conjecture is due the majority of false dependency arcs crossing leaf level loop

17



boundaries. For RS1 and RS2 barriers are placed at leaf level loop boundaries. Renaming

provides little bene�t because most of the false arcs cross these barriers. The ordering of

memory operations is therefore enforced by the barrier rather than the false dependency arc.

Renaming compensates for conservative analysis when MD=0 (see �gure 3). However with

large latencies there is little di�erence between the `cta+rename' and `cta-rename' con�gura-

tions. The same is not true for perfect analysis where the gap for RS6 between `pfa+rename'

and `pfa-rename' widens when MD is 60. This indicates that for perfect dependency analysis

renaming is more important when MD is 60. It also shows that renaming is more important

to perfect than conservative dependency analysis when MD is 60 (see �gure 4).

Figures 5 and 6 show the latency hiding e�ectiveness for di�erent CIW for RS1 and RS6,

respectively. To varying degrees all con�gurations show a deterioration in e�ectiveness as

the CIW is increased. We can see that in both �gures the gap between the conservative and

perfect analysis is large, indicating the importance of high quality dependency analysis to

latency hiding.

It will also be noticed that for both perfect analysis con�gurations the wider scope for

reordering increases the latency hiding e�ectiveness. This can be seen clearly by the di�erence

in the �gures 5 and 6 where when CIW=2 the e�ectiveness increases by about 20%.

For the con�guration with perfect analysis renaming improves the e�ectiveness of the

latency hiding only when the reordering scope is large and dependency analysis is perfect.

This can be seen from the di�erence between �gure 5 and 6.

For RS9 and perfect dependency analysis renaming is important for improving the scala-

bility of Access Decoupling. This can be seen from �gure 6 where for a CIW of 2 the di�erence

in e�ectiveness is only 1%. However when CIW is 9 the di�erence from renaming is 16%.

This indicates that the e�ectiveness of the decoupling becomes more dependent on renaming

as the CIW increases. The reduction in e�ectiveness for the con�gurations `pfa+rename' and

`pfa-rename' is 14% and 28%, respectively. The scalability of access decoupling is therefore

dependent on the use of renaming when dependency analysis is perfect.

18



The latency hiding e�ectiveness for RS9 and the con�guration with perfect dependency

analysis and renaming exhibits behaviour favourable to the scalability of access decoupling.

Firstly when CIW � 5 the e�ectiveness is relatively stable around 90%. Secondly when CIW

is 9 the e�ectiveness, as would be expected for a large memory di�erential, decreases, but only

by 16%. To improve the e�ectiveness we will need to adopt other latency hiding techniques

for high CIW. We discuss one option in section 8.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

IP
C

Reordering Scope

Average IPC ; AU,DU=4,5 ; md=0 ;

pfa+rename
pfa-rename
cta+rename
cta-rename

Figure 3: Average IPC when MD=0

0

1

2

3

4

5

6

0 1 2 3 4 5 6

IP
C

Reordering Scope

Average IPC ; AU,DU=4,5 ; md=60 ;

pfa+rename
pfa-rename
cta+rename
cta-rename

Figure 4: Average IPC when MD=60

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9

E
ffe

ct
iv

en
es

s

Combined Issue Width

Average Latency Hiding Effectiveness (RS=1)

pfa+rename
pfa-rename
cta+rename
cta-rename

Figure 5: Average Latency Hiding E�ective-

ness (RS=1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9

E
ffe

ct
iv

en
es

s

Combined Issue Width

Average Latency Hiding Effectiveness (RS=6)

pfa+rename
pfa-rename
cta+rename
cta-rename

Figure 6: Average Latency Hiding E�ective-

ness (RS=6)

19



7.2 Memory Reordering and Barrier Con�gurations

Figures 7 and 8 show the IPC for di�erent memory ordering and barrier con�gurations when

the MD is 0 and 60 cycles respectively. The measurements were made with perfect dependency

analysis and renaming. The di�erent barriers con�gurations where measured using weak

memory ordering.

Th most signi�cant result is that any future Access Decoupled machines must support

reordering of memory operations. This can be clearly seen in both �gures 7 and 8 by the

large gap between the WKO and, the SSO and STO con�gurations. The SSO con�guration

has only a marginally higher IPC than the STO con�guration.

Like the con�guration with conservative analysis discussed in section 7.1, the SSO and

STO con�gurations show no change in performance for reordering scopes beyond RS1. In

section 7.1 we commented on the necessity of wide reordering scope in order to hide the MD

of 60 cycles. We can therefore infer that the STO and SSO con�gurations will have poor at

latency hiding capabilities because it restricts the operation reordering for wide scopes. This

can be seen clearly in the graph for latency hiding e�ectiveness in �gure 10.

Figure 8 shows for RS1 and RS2 the importance of the AU being able to continue prefetch-

ing data across leaf level loop boundaries to hide large latencies. This result follows from the

large IPC di�erence between the con�gurations with synchronising and non-synchronising

barriers

5

.

We also notice that our Access decoupled machines synchronises between nested loops and

across procedure call boundaries due to data dependencies from the DU to AU. We can infer

this from the converging lines for RS3 and RS5 when the con�gurations have synchronising

and non-synchronising barriers (see �gure 8).

Figure 9 and 10 show the latency hiding e�ectiveness for di�erent CIW for RS1 and RS6,

respectively. Again as in the previous section we observe, the varying degrees of reduction in

5

The line for non-synchronising barriers is the same as the weakly ordered con�guration line.

20



e�ectiveness as CIW increases.

The major di�erences between �gures 9 and 10 is the increasing e�ectiveness of the con-

�guration with synchronising barriers and the lack of variation in the behaviour of SSO and

STO. For RS1 the e�ectiveness of latency hiding is poor when the con�guration has syn-

chronising barriers. As was noted above above this results from the need to allow the AU to

prefetch data across leaf level loop boundaries. Access decoupling does not scale well with

this con�guration. When CIW is 9 the e�ectiveness is only 38% which is less than SSO and

STO.

The con�gurations for SSO and STO behave independently of instruction reordering for

two reasons. Firstly the addition of extra issue slots provides little increase in IPC once

CIW=4. Secondly as commented earlier in this section the IPC does not increase with wider

reordering scope.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

IP
C

Reordering Scope

Average IPC ; AU,DU=4,5 ; md=0 ;

wko
sso
sto

sync

Figure 7: Average IPC when MD=0

0

1

2

3

4

5

6

0 1 2 3 4 5 6

IP
C

Reordering Scope

Average IPC ; AU,DU=4,5 ; md=60 ;

wko
sso
sto

sync

Figure 8: Average IPC when MD=60

8 Conclusion and Future Work

In this paper we have presented an argument for renewed interest in Access Decoupling as

a way to reduce the complexity of hardware issue logic in an o-o-o machine. We have also

examined the important hardware and software design issues which a�ect the IPC, latency

21



0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9

E
ffe

ct
iv

en
es

s

Combined Issue Width

Average Latency Hiding Effectiveness (RS=1)

wko
sso
sto

sync

Figure 9: Average Latency Hiding E�ective-

ness (RS=1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9
E

ffe
ct

iv
en

es
s

Combined Issue Width

Average Latency Hiding Effectiveness (RS=6)

wko
sso
sto

sync

Figure 10: Average Latency Hiding E�ective-

ness (RS=6)

hiding e�ectiveness and scalability of our Access Decoupled machine.

Using results from analytical and simulation studies we have compared the performance

and average window size of a SIS and DIS o-o-o machine. The results have shown that

although IPC levels are marginally smaller for DIS (between 9% and 5% when CIW is 9) the

reduction in average window size could be as much as 44% when CIW is 9. We have also

observed that the reduction in average window size increases with larger CIW. We know that

window logic delays impact upon clock period and vary quadratically with window size and

issue width [13]. We would therefore anticipate that when CIW is large the payo� between

lower IPC and faster clock speed will result in higher performance for the DIS machine.

We have also shown that when CIW is 9 we can achieve high IPC even when memory

di�erentials are as large as 60 cycles. The results show that our Access Decoupled machine

can achieve IPC levels of 7.5 and 5.9 for a MD of 0 and 60 cycles, respectively. These results

are dependent on an architecture con�guration with perfect dependency analysis, renaming,

weak memory ordering and wide scope for reodering operations. For the same con�guration

we have also found behaviour favourable to the scalability of access decoupling. The latency

hiding e�ectiveness has been shown to be stable around 90% for CIW � 5 and only decrease

by 16% when CIW is 9. We conclude therefore that at high CIW there is a need consider

22



additional latency hiding techniques. One solution is to use a technique described in [1] which

captures some of the temporal locality exposed by decoupling in the decoupled memory. When

a load and store address match in the decoupled memory, the result for the store could be

bypassed to the DU, removing the need to access the memory system.

Our study into the hardware and software design issues which e�ect performance have

shown the importance of sophisticated compiler technology. To hide large memory latencies

the compiler must be capable of accurate inter and intra procedural dependency analysis.

Without accurate analysis the latent bene�ts of wider reordering scope can not be realised

and high latencies can not be hidden.

Another major �nding is that the ability to reorder memory operations is critical to

achieving high IPC and hiding memory latency. We have also found that reordering operations

across procedure call boundaries is important to achieving high IPC when the MD is large;

it has less signi�cance when the memory di�erential is 0 cycles.

Wide reordering scopes can o�er su�cient operations to hide latency but are dependent

on the memory ordering scheme and the data dependency analysis. For con�gurations with

STO, SSO and conservative analysis the bene�ts of wide reordering scope can not be realised,

due to the memory ordering scheme and dependency analysis being the bottleneck.

For con�guration with narrow reordering scopes, where barriers exist at leaf level loops,

we have observed that it is important to allow the AU to continue prefetching data after the

barrier. Synchronising barriers are observed to reduce performance especially when the MD

is large.

In future work we plan to examine the e�ect of window size and code expansion on the

DIS and SIS machines. We also plan to investigate the use of techniques like the address

reorder bu�er [8] to reorder memory operations in a decoupled machine. Finally we will look

at ways to optimise the decoupled memory to utilise the locality exposed by decoupling when

the CIW is large.

23



References

[1] Local Author. A Limitation Study into Access Decoupling. In To be published in Euro-

Par 97, University of Passau, Germany, Aug. 1997.

[2] A. Berrached, L.D. Coraor, and P.T. Hulina. A Decoupled Access/Execute Architecture

for E�cient Access of Structured Data. In Proc. of the 26th Hawai Int. Conf. on System

Sciences, volume 1, pages 438{47, Los Alamitos, CA, USA, Jan 1993. IEEE.

[3] D. Bhandarkar and J. Ding. Performance Characterisation of the Pentium Pro Processor.

In Proceedings of the 3rd Int. Symp. on High Performance Computer Architecture, San

Antonio, Texas, USA., Feb. 1997. IEEE.

[4] P. Bird, A. Rawsthorne, and N.P. Topham. The E�ectiveness of Decoupling. In Proc.

Int. Conf. on Supercomputing, Tokyo, Japan, May 1993.

[5] J.E. Smith et al. The ZS-1 Central Processor. In Proc. of the 2nd Int. Conf. on Archi-

tectural Support for Programming Languages and Operating Systems, October 1987.

[6] M. Berry et al. The Perfect Club Benchmarks, E�ective Performance Evaluation of Su-

percomputers. Techreport 827, CSRD, University of Illinois, Urbana-Chmpaign, Urbana,

Illinois., May 1989.

[7] W. Blume et al. Automatic Detection of Parallelism: A Grand Challenge for High

Performance Computing. CSRD 1348, Center for SuperComputing Research and Devel-

opment., University of Illinois at Urbana-Champaign, 1308 W.Main St, Urbana, Illinois,

July 1994.

[8] M. Franklin and G.S. Sohi. ARB: A Hardware Mechanism for Dynamic Rordering of

Memory References. In IEEE Transactions on Computers, volume 45, May 1996.

[9] L. Gwennap. Digital 21264 sets new standard. Microprocesor Report, 10(14), Oct. 1996.

24



[10] M. Kumar. Measuring Parallelism in Computation Intensive

Scienti�c/Engineering Applications. IEEE Transactions on Computers, 37(9):1088{1098,

Sept. 1988.

[11] local author. Evaluating the Limits of Access Decoupling using the Latency Hiding

Model. Technical report, home university, 1997.

[12] M.K.Farrens and A.R.Pleszkun. Implementation of the PIPE Processor. IEEE Computer,

pages 65{70, Jan 1991.

[13] S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-E�ective Superscalar Processors.

In 24th Annual International Symposium on Computer Architecture, 1997.

[14] P.M. Petersen. and D.A. Padua. Evaluation of Parallelsing Compilers. CSRD 1279, Cen-

ter for Supercomputing Research and Development., University of Illinois at Champaign-

Urbana, Urbana, Illinois, 61801, 1992.

[15] Z. Shen, Z. Li, and P-C. Yew. An Empirical Study on Array Subscripts and Data

Dependences. In 1989 International Conference on Parallel Processing, pages II{145{II{

152, 1989.

[16] N.P. Topham, A. Rawsthorne, C.E. McLean, M.J.R.G. Mewissen, and P.Bird. Compiling

and Optimising for Decoupled Architectures. In Proc. of Supercomputing '95, San Diego,

Dec. 1995. ACM press.

[17] G. Tyson, M. Farrens, and A.R. Pleszkun. MISC : A Mutiple Instruction Stream Com-

puter. In Proc. of the 25th Ann. Sym. on Microarchitecture, Portland, Oregon, Dec 1-4

1992.

[18] S. Vajapeyam, G.S. Sohi, and W-C Hsu. An Empirical Study of the CRAY YMP Proces-

sor using the PERFECT Club Benchmarks. In Proceedings of the 1991 ACM Int. Conf.

on Supercomputing, pages 170{179, New York, 1991. ACM, ACM press.

25



[19] Wm A. Wulf. An Evaluation of the WM Architecture. In Proc. Int. Symp. on Computer

Architecture, Gold Coast, Australia, May 1992.

[20] K.C. Yeager. The Mips R10000 Superscalar Microprocessor. IEEE micro, 16(2):28{41,

April 1996.

26


