
Evaluation of Multiprocessor

Interconnection Networks

F.W. Howell & R.N. Ibbett

Technical Report CSG-38-98

Department of Computer Science

University of Edinburgh

July 27, 1998

Abstract

This report describes the work carried out under the EMIN project to set up a

testbed for simulating multiprocessor networks. All levels from low level hardware

to the software interfaces a�ect performance, and so the initial simulation test-

bed provided an MPI interface on top of a cycle level simulator. The networks

modelled included a crossbar and the Cray T3D network. Meaningful simulations

at this level of detail proved infeasible, however, and an alternative approach was

to use microbenchmarking, of both shared memory and message passing network

primitives, as a means of characterising network performance in a way which is

meaningful to programmers. This led to a re�ned simulation testbed which cleanly

separates workload models from network models, using an interface based on the

microbenchmarking work. In a further development, a web version of the testbed

was developed and the value of this approach to modelling is evaluated, in particular

the accessibility of the simulation models and the importance of visualisation.

Contents

1 Introduction 1

2 The MPI Models 3

2.1 The VLXbar . 3

2.1.1 Tra�c generation . 3

2.2 Multistage networks . 11

2.2.1 Routing . 11

2.3 The MPI interface . 12

2.3.1 Validation . 12

2.3.2 Performance . 13

2.4 A real system routing network: the T3D 13

2.4.1 Low level behaviour of the T3D routing network 13

2.4.2 Deadlocks and virtual channels 15

2.4.3 Results . 16

2.5 Summary . 17

3 Microbenchmarking 18

3.1 Message passing . 18

3.2 Shared memory . 19

3.2.1 Routines common to all . 19

3.2.2 Posix threads . 21

3.2.3 Solaris Threads . 22

3.2.4 Windows NT threads . 22

3.2.5 The Cray T3D . 22

3.2.6 Sequent Symmetry . 23

3.3 Measurement examples . 24

3.3.1 In
uence of the cache . 26

3.3.2 Inaccuracy of the timer and loop overheads 26

3.3.3 Code generation . 26

3.3.4 Memory bank contention . 27

3.4 Presentation of results . 27

3.5 Summary . 27

ii

4 The Multiprocessor Simulation Testbed 29

4.1 Interface speci�cation . 29

4.2 Models . 31

4.2.1 The Bus . 31

4.2.2 The Crossbar . 31

4.2.3 The Multistage Network . 32

4.2.4 The Processor Node . 32

4.2.5 The Memory . 33

4.2.6 The Cache . 33

4.3 Workloads . 33

4.3.1 A Random workload . 34

4.3.2 A Cray workload . 34

4.3.3 Memory bank saturation . 34

4.3.4 Threaded workload . 34

4.3.5 Cache test workload . 35

4.4 Experiments . 35

4.4.1 E�ect of cache on network performance 35

4.4.2 Scalability measures . 35

4.5 Timing diagrams. 41

4.6 Summary . 41

5 The simjava Models 44

5.1 The models . 44

5.2 3D network models . 45

5.3 Summary . 48

6 Conclusions 49

iii

iv

Chapter 1

Introduction

This report documents the work carried out as part of the EMIN (Evaluation of Mul-

tiprocessor Interconnection Networks) project under EPSRC Grant GR/K19716.

The aim of the project was to set up a simulation testbed for evaluating inter-

connection networks, stretching from low level hardware details up to the software

which uses them.

The report is structured into four chapters which follow the development of the

project through time.

The �rst approach was to include everything in the model, from a clock cycle

level simulation of the network up to the interface which parallel software sees

(Chapter 2). This was successful in showing that it was possible to interface real

parallel software (in this case the MPI interface) to low level hardware models, but

was expensive in terms of time to construct models and time to execute them.

The next stage was to develop an appropriate interface layer between hardware

and software models to reduce the complexity of the combined models (Chapter 3).

The idea was that hardware models would reach up to this interface, software models

would reach down to it, and there would be scope for `plug and play' between models.

The interface layer built on earlier work in microbenchmarking and extended its

scope.

Once the interface layer had been constructed, the next stage was to use it as

the basis for building a simulation testbed. This decoupling of hardware models and

software workloads is described in Chapter 4.

For a design tool to be e�ective, the turnaround time must be small and the

results must be visible and understandable. Visualisation of simulation results is

therefore crucial. Figure 1.1, for example, is a screen shot of a visualisation tool

developed for viewing simulation results as a timing diagram.

Simjava [1, 2, 3] takes this one step further, and allows live simulations to be

included in documentation. The simulation testbed developed originally using C++

was therefore ported to the simjava simulation language to allow wider access to

models across the web (Chapter 5). The on-line HTML version of this report [4]

include examples of the models developed in this project.

1

Figure 1.1:

2

Chapter 2

The MPI Models

The initial aim of the EMIN project was to build realistic simulation models of

actual networks, ranging from the clock cycle level up to high level software. This

chapter describes the design of these models, and the lessons learnt while building

them. The models built were a large packet switching crossbar, a generic multistage

network and the Cray T3D torus interconnect.

2.1 The VLXbar

The VLXbar [5] was a proposal for a packet switched crossbar switch design based

on an earlier design (Xbar [6]) which had been fabricated in silicon. The aim of the

simulation study was to investigate some design alternatives and to visualise how

the system behaved under a variety of workloads. Figure 2.1 shows the simulation

model constructed using HASE. Down the left hand side are eight sources; these

feed packets into the input queues. The outputs are also bu�ered; each output is

shown in a dotted box and includes two output queues and arbiters to decide (a)

when a
it (each packet transmission is composed of a number of
its) can go into

an output queue and (b) which one. The output sinks are at the right hand side of

the picture. The crossbar interconnect is an N � N connection between the input

queues and the output queues (not shown in this visualisation).

During model animation the queues �ll and empty, the arbiters show which way

they are arbiting, and the input and output sinks and sources show when they are

blocked and busy.

2.1.1 Tra�c generation

A random workload was developed for the model's source entity. The parameters

were utilisation and hot spot probability. Utilisation is de�ned as the proportion

of time that the source is sending
its to the network. The easiest way of generating

an X% utilisation workload is to use a random number generator to choose the

3

Figure 2.1: The HASE model of the VLXbar network

4

time delay between sucessive packets (e.g. for 50% utilisation, choose a random

delay with an average of the packet transmission time). This tends to produce more

evenly distributed tra�c than is realistic. Each packet transmission is composed of a

number of
its, so a more sophisticated tra�c generator was used which samples the

random number generator after every
it to decide whether to initiate a new packet.

If the decision is positive, the new packet starts immediately after the current one.

This approach to generation leads to more realistic `bursty' tra�c.

For this model a hot spot probability parameter was used to decide to send

a packet to a �xed destination rather than to a random one.

From a single run of the simulation, the output is a timing diagram and statistics

collected by each entity. As an example, the sink entity gives the number of packets

and
its received at each output, and the minimum, average and maximum delays

which packets su�ered, as shown in the following table.

(90% util, pkt size = 8, 10% hotspotting, 8 inputs, 1000 clk cycles):-

u:sinks0 at 1000.050000: C Pkts:68, flits:545, delay:(9,24,47)

u:sinks1 at 1000.050000: C Pkts:114, flits:915, delay:(15,127,221)

u:sinks2 at 1000.050000: C Pkts:30, flits:241, delay:(15,19,35)

u:sinks3 at 1000.050000: C Pkts:40, flits:326, delay:(15,21,36)

u:sinks4 at 1000.050000: C Pkts:76, flits:608, delay:(15,51,130)

u:sinks5 at 1000.050000: C Pkts:51, flits:408, delay:(15,20,45)

u:sinks6 at 1000.050000: C Pkts:103, flits:824, delay:(9,119,240)

u:sinks7 at 1000.050000: C Pkts:115, flits:926, delay:(9,74,157)

For multiple runs of the simulation, the e�ect on output performance of varying

input parameters was obtained. The following graphs show the e�ects on the system

components of varying the utilisation.

Figure 2.2 shows how the maximum input queue length increases fairly linearly

as utilisation increases.

Figure 2.3 shows how the average output queue lengths increase up to an average

of 1 at 70% utilisation and then level out. This is because once the output queue

length hits an average of one, the outputs are saturated.

The upper graph in Figure 2.4 shows how the average and maximum packet

delay varies with utilisation. The lower graph shows the 10 percentile distribution.

There is a big jump at 80% in the maximum packet delay (and the average packet

delay then grows more slowly); some of the packets start to be very slow above 80%

utilisation.

Figure 2.5 shows the percentages of time the output arbiters are in the states

NONE (i.e. idle), Q1 (arbitrating for output queue 1), Q2 (arbitrating for output

queue 2), while Figure 2.6 shows the percentages of time the output multiplexors

are in the states NONE, SEND1 (i.e. sending from output queue 1 to the sink),

SEND2 (i.e. sending from output queue 2 to the sink).

5

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100
utilisation

qlen_max.max
qlen_avg.avg

Figure 2.2: Maximum input queue length vs utilisation.

Figure 2.7 shows the in
uence of the network on the source (upper graph) and

sink (lower graph); the source is never blocked until 80% utilisation, and the sink

processes progressively more
its until the network starts to saturate.

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80 90 100
utilisation

qlen_avg.avg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80 90 100
utilisation

qlen_avg.avg

Figure 2.3: Output queue lengths (Q1 and Q2) vs utilisation.

7

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

T
im

e
(c

lo
ck

 c
yc

le
s)

Utilisation

Min time
Max time
Avg time

Min time (no clawback)
Max time (no clawback)
Avg time (no clawback)

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

T
im

e
(c

lo
ck

 c
yc

le
s)

Utilisation

Min time
Max time
Avg time
Std Error

avg of 1st 10%
avg of 2nd 10%
avg of 3rd 10%
avg of 4th 10%
avg of 5th 10%
avg of 6th 10%
avg of 7th 10%
avg of 8th 10%
avg of 9th 10%
avg of top 10%

Figure 2.4: Packet delay distribution (with and without clawback) vs utilisation.

8

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100
utilisation

NONE.avg
Q1.avg
Q2.avg

Figure 2.5: Output Arbitration Performance vs Utilisation

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100
utilisation

NONE.avg
SEND1.avg
SEND2.avg

Figure 2.6: Output Multiplexor Performance vs Utilisation

9

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100
utilisation

Blocked.avg

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100
utilisation

Utilisation.avg
Pkts.sum
flits.sum

Figure 2.7: Source and sink performance vs utilisation

10

2.2 Multistage networks

The VLXbar was designed to be useful as a component of multistage switching

networks, so the simulation model described in Section 2.1 was also used as a com-

ponent to build such multistage networks. A framework was constructed which

allowed any size of crossbar to be used as the switching element and the detailed

multi-entity model described in the previous section was replaced by a single entity

encapsulating all the behaviour.

2.2.1 Routing

The routing algorithm for the general N way omega network is given in C++ in

�gure 2.8. The basic idea is that the �rst
it arriving at the crossbar is the des-

tination address which is stripped from the packet when it leaves. In a multistage

network with three stages, the �rst
it of the packet determines the route through

the �rst stage, the next determines the route through the second and the third
it

determines the address through the third crossbar. When the packet emerges, it

has lost its address
its and just contains data.

void mstage_src::construct_route(int dest, int *buf, int *i)

{

/* Construct route from here to there */

*i = 0;

/* For each stage */

/* dest = bit pattern */

/* 00 11 01 10 */

/* Shift dest by log2(swsize)

* and with mask of swsize -1

*/

int mask = swsize-1;

int lgswsize = ilog2(swsize);

for (int s=nstages-1; s>=0; s--) {

buf[s] = dest & mask;

dest >>= lgswsize;

}

(*i) = nstages;

}

Figure 2.8: Routing algorithm for N way omega network.

11

2.3 The MPI interface

As well as using random workloads, the low level simulation models were also in-

terfaced to the MPI interface. The MPI interface is a standard for writing message

passing programs on parallel machines. Providing an MPI interface on top of a

simulation model of a parallel network e�ectively creates a working implementation

of MPI on the (simulated) platform.

This is not a trivial task. The MPI interface has a large number of functions

ranging from basic message passing to collective reductions, gathering and scattering

of complex data sets, and a wide variety of synchronisation options. MPI source

code for an implementation based on LANs was available, however, and this was

used as the basis for the simulation interface.

The layers from the MPI program down to the low level network simulation

model are as follows:-

1. Code in the workload generator \src" calls MPI Send() (for example).

2. MPI Send() (a method of the src class) checks the MPI level group informa-

tion encoded in the parameters, then calls a lower level routine send mpi packet.

3. send mpi packet operates as in �gure 2.9.

RRRR I HHHHHHHHHH DDDDD

Data

route message ID

2. Insert route into the header of each packet:

1. Break MPI messages into a number of fixed-size network packets

3. Send all network packets, calling send_raw_pkt

MPI header

Figure 2.9: Sending MPI messages through the network

4. send raw packet breaks the network packet into its
its and performs
ow

control to send it to the input of the network simulation component.

2.3.1 Validation

To validate the MPI interface implementation, a number of basic test programs were

run (point-to-point, scatter, gather, barrier), and the MPI level output was checked

for correctness.

12

2.3.2 Performance

A clock cycle simulation of a parallel machine was developed, running actual ap-

plication code: each MPI call on each simulated processor caused many simulated

packets to be generated; each simulated packet was made up of a number of
its;

each
it caused a number of events to occur as it moved between the di�erent input

and output queues of each simulated switch it went through. As might therefore

be expected, this resulted in a very slow implementation of MPI, and so in practice

it was only realistic to run short test sequences. On a 64-processor model with

crossbar, a simulation of MPI level all to all communication took approximately 20

minutes on a workstation.

2.4 A real system routing network: the T3D

Amodel of the T3D interconnection network model was constructed at a similar level

of detail to that built for the VLXbar. This was to see how the torus interconnect

would compare with a crossbar or multistage network. The T3D was an ideal choice

as it was (at the time) a state of the art network and a T3D system was available

in EPCC. Detailed hardware information was provided by Cray sta� working at

EPCC.

2.4.1 Low level behaviour of the T3D routing network

There are 6 di�erent sizes of packet which can be sent through the Cray network,

ranging from 3
its up to 26. The types are given in Table 2.1. The transactions

use the packet types for requests and responses as shown in Table 2.2.

Type Size Contents

0 3 route,dest,cmd

1 6 route,dest,cmd,ad1,ad2,src

2 8 route,dest,cmd,ad1,ad2,src,rad1,rad2

3 8 route,dest,cmd,d1,d2,d3,d4,E5

4 11 route,dest,cmd,ad1,ad2,src,d1,d2,d3,d4

5 23 route,dest,cmd,d1..16

6 26 route,dest,cmd,ad1,ad2,src,d1..16

Table 2.1: Packet types on the Cray T3D network

PE is the processing element, the BLT is a DMA device which has access to the

network, pfetch stands for prefetch, f+inc and swap are used for synchronisation.

The `node' of the torus contains two CPUs, a network interface and a router with

6 bidirectional connections (left, right, up, down, in, out) as well as connections to

and from the network interface. The router is actually made up of three switches:

13

Transaction Request Response

PE noncache rd 1 3

PE wr 1word 4 0

PE cache rd 1 5

PE wr 4word 6 0

BLT rd 1word 2 4

BLT wr 1word 4 0

BLT blk rd 2 6

BLT blk wr 6 0

pfetch rd 1 3

f+inc rd 1 3

f+inc wr 4 0

swap 4 3

Table 2.2: Transaction types on the Cray T3D network

the X switch, the Y switch and the Z switch. Each switch routes both ways in its

own dimension, and also has input and output connections for messages which are

turning a corner.

The HASE++ simulation code for building a node is:-

proc *pe0 = new proc(pe0name, new sim_port(nifname),

x,y,z,0,SRC_OK);

proc *pe1 = new proc(pe1name, new sim_port(nifname),

x,y,z,1,SRC_OK);

nif *n = new nif(nifname,

new sim_port(pe0name), new sim_port(pe1name),

new sim_port(btename), new sim_port(netoname),

new sim_port(netiname),x,y,z);

router *r = new router(new sim_port(nifname), new sim_port(nifname),

xp_i, xm_i,

yp_i, ym_i,

zp_i, zm_i,

x,y,z);

The router is made up of three switches:-

cswitch *xsw = new cswitch(xname,pein_i,xp_i,xm_i,

new sim_port(yname),

x,y,z,0);

cswitch *ysw = new cswitch(yname,new sim_port(xname),yp_i,ym_i,

new sim_port(zname),

x,y,z,1);

14

cswitch *zsw = new cswitch(zname,new sim_port(yname),zp_i,zm_i,

peout_i,

x,y,z,2);

2.4.2 Deadlocks and virtual channels

Deadlocks can occur if there is a cyclical dependency (such as can happen in a torus).

In order to break the cycle, virtual channels are implemented in the T3D routing

strategy. Although there is only one physical connection between two switches,

there are four virtual channels. Requests and responses use di�erent virtual channels

(so that they cannot block each other); there is also the idea of an \international

date line"; messages must switch channels when they cross this point in the torus,

breaking the cycle.

This was implemented in the model of the switch using an array of bu�ers:-

// Virtual channels - each is an array of 8 flits.

vc *vchan[3][4];

Arbitration must be done for the virtual channels as well as the physical con-

nections. To give an idea of the complexity of the switch, the class de�nition �le is

given here:-

class cswitch : public hsim_entity {

protected:

sim_port pdim, mdim, pein, swout;

// Routing

int x,y,z;

int dim; // 0=xsw, 1=ysw, 2=zsw

virtual int route(int dest); // Return op no.

int route_dim(int i, int di, int dsz); // Return M_OUT/P_POUT

// Internal blocking

int op_blocked[3][4];

int ip_blocked[3][4];

int ip_dest[3][4]; // Dest op for given iq

int op_ipno[3]; // ip no for given op

int op_ipvc[3]; // ip vc no for given op

void ok(int i, int v); // Send OK to ip/vch

// Virtual channels - each is an array of 8 flits.

vc *vchan[3][4];

void break_link(int input_no, int vc_no, int op);

void make_link(int input_no, int vc_no, int op);

15

// Conflict resolution for input

int ip_pri;

int vc_pri;

int ip_dist(int ip); // distance of ip from pri

int vc_dist(int vc);

void rotate_priorities();

void resolve_conflict(int&i1,int&vc1,int i2, int vc2);

sim_port* get_op_port(int i);

sim_port* get_ip_port(int i);

int get_op_no(sim_event &ev);

int get_ip_no(sim_event &ev);

void send_qe(queue_elem &qe, int dest);

void wait_for_msg();

void swallow_clocks();

void make_clock();

void recv_input_msgs();

void recv_oks();

void forward_flits();

void arbitrate();

void handle_msgs();

void dump_state();

public:

cswitch(char*n,

sim_port *pein_i, sim_port *pdim_i, sim_port *mdim_i,

sim_port *swout_i,

int x_i, int y_i, int z_i, int dim_i);

void body();

}

2.4.3 Results

With tracing switched o�, the T3D model ran at 12500 events per second (using

HASE++ on a Sun SPARC-20). For a 32 processor simulation running MPI code,

this worked out at just under 1 second real time per simulated clock cycle. Thus it

proved infeasible to run anything other than small test programs to verify the model,

and so no meaningful performance �gures could be obtained by this technique.

16

2.5 Summary

This phase of the project produced:

� A detailed simulation model of a packet switched crossbar design.

� A higher level model for use as a component in multistage switching networks.

� A detailed working model of the Cray T3D network capable of running MPI

code.

MPI software was successfully interfaced with cycle level simulation models, but

the simulation performance was such that it was unrealistic to simulate programs of

more than a few MPI calls - and totally unrealistic to run large applications on the

simulation models. Porting the simulation environment to the Cray T3D did not

help particularly; the uniprocessors of the T3D are no faster than workstations, the

T3D memory system is not optimised for DE simulation programs (it has a small,

single level cache and no secondary cache; it was necessary to write a threading

library as none was provided by Cray Research), and developing a parallel simulation

engine was infeasible because of the amount of time this would have involved.

Building the models provided useful insight into the low level behaviours of these

networks, and led to a new approach described in the next chapter of this report.

17

Chapter 3

Microbenchmarking

The idea of the `benchmarking' approach is to take a standard application and

measure its performance on a range of machines [7]. The value of this is that it

provides a �xed point for comparing performance. The problem with it (from the

point of view of system designers or people wanting to do performance prediction)

is that the performance of a system running one application gives no clues as to the

underlying reasons for the given performance; for this more detailed measurements

are needed.

Microbenchmarking provides these measurements; rather than give one number

for the performance, the time taken by each of the primitive operations making

up the performance is measured. This is a complementary process to standard

benchmarking, but provides more detailed performance information.

In this application `microbenchmarks' can be seen as the performance character-

isation of the interface layer between hardware and software of multiprocessor net-

works. Routines are described for measuring shared memory and message passing

performance, as well as calculating `microbenchmarks' analytically. The use of mi-

crobenchmarks in simulation is also described, both as the output of low level hard-

ware models and as the input to high level software models.

The `primitive operations' of a parallel machine depend on the programming

model; the two most important models are message passing and shared memory.

3.1 Message passing

A message passing interface consists of a set of communications functions such as

`send', `receive', `broadcast'. The microbenchmark characterisation chosen consists

of a table giving the performance of each communication function. The web page [8]

contains code and examples. The table below shows the microbenchmark obtained

by running a characterisation routine across a network of workstations.

These routines were originally developed for software performance prediction;

more details are available in [8], [9] and [10].

18

MPI Function Time (�s) Goodness

of �t (Q)

send 5000 + 1 � ndata 0:95

ssend 10000 + 2 � ndata 1:00

rsend 5000 + 0:9 � ndata 0:94

recv 8000 + 3 � ndata 1:00

recvmin 3000 + 0:7 � ndata 0:23

irecv1 70 + 0:001 � ndata 1:00

irecv2 8000 + 2 � ndata 0:97

irecvoverlap 5000 + 0:9 � ndata 0:98

sendrecv 10000 + 3 � ndata 0:91

pingpong 10000 + 4 � ndata 0:98

alltoall 0 + 4000 � p

2

+ 2� p

2

� ndata 1:00

gather 0 + 20000 � log(p) + 2 � p� ndata 1:00

allgather 0 + 8000 � p + 2� p

2

� ndata 1:00

reduce 0 + 20000 � log(p) + 2 � p� ndata 1:00

allreduce 0 + 8000 � p + 2 � p� ndata 1

bcast 1000 + 600 � p

2

+ 0:9� p� ndata 1:00

Table 3.1: Microbenchmark characterisation of MPI performance on a network of

workstations.

3.2 Shared memory

Microbenchmark measuring routines were also developed for shared memory ar-

chitectures, including the Solaris and POSIX threads library (for multiprocessor

workstations), the Cray SHMEM library, and the Sequent shared memory model.

The characterisation takes the form of measuring the performance of synchronisa-

tion operations (such as barriers, semaphores, process creation and joining), as well

as the thornier issue of measuring the performance of the shared memory system.

Characterising the performance of the memory system is di�cult because of the

number of levels in the hierarchy, and because of the possibility of both network

and memory bank interference between di�erent memory accesses. The following

sections describe the techniques used for measurements on the Sequent Symmetry

programming model, POSIX and Solaris threads on multiprocessor workstations,

the Cray T3D shared memory operations and NT threads.

3.2.1 Routines common to all

To measure memory access times for local and remote data, it is essential to know

whether the data is stored in the local cache or in main memory. This requires

devious programming. The basis of the measurements is a data bu�er, int buf

[csize];: with size csize greater than the cache size.

19

A single pass through this array, reading every element, will
ush out the old

contents of the cache. If the array is at least twice the size of the cache, subsequent

passes through the array will su�er continuous cache misses.

In addition to the cache size, the block size is also a parameter. The worst case

involves stepping through buf with a step size equal to the block size.

It is possible to determine the cache size and the block size experimentally, but

this is not easy, since the times involved are so short, and there is the danger of pro-

cess switching interfering with the timings. So these �gures are left as parameters.

It is most attractive to make the measurements using a compiled language like

C++, but the measurements are at the mercy of the code generator, so it is essential

to check that the generated assembler contains only the required memory references.

The loop overheads interfere with the timings. This may be measured using a

\control" empty loop. The impact may also be reduced by \unrolling" the loop to

contain a sequence of memory operations.

The actual function used to measure the time introduces another variable. The

timer resolution is typically 1�s or the clock rate of the processor, and the overhead

of calling the timer may be severe.

The loop to time reading .nwords. words from main memory (unrolled eight

times) is:-

double e1 = MPI_Wtime();

for (int j=0; j<nwords; j+=8, index += 8*blk_size) {

accum += buf[index];

accum += buf[index+blk_size*2];

accum += buf[index+blk_size*3];

accum += buf[index+blk_size*4];

accum += buf[index+blk_size*5];

accum += buf[index+blk_size*6];

accum += buf[index+blk_size*7];

}

time = MPI_Wtime() - e1;

The time returned will be composed of:

{time to read nwords} + {loop overhead} + {timer overhead}

+ {indexing and adding overhead} + e

where .e. is a random error caused by context switching/virtual memory paging.

In order to extract the required time to read nwords, it is either necessary to

subtract the overheads, or to ensure that they form an insigni�cant portion of the

time. The indexing and adding overhead is small compared to the memory access

time, and is required in most programs.

The above loop must be repeated as shown below for long enough to minimise

the one-o� timer overhead (and to compensate for the timer's lack of resolution).

This must be done with care to avoid spurious cache hits.

20

double e1 = MPI_Wtime();

for (int i=0; i<iters; i++) {

for (int j=0; j<nwords; j+=8, index += 8*blk_size) {

accum += buf[index];

accum += buf[index+blk_size*2];

accum += buf[index+blk_size*3];

accum += buf[index+blk_size*4];

accum += buf[index+blk_size*5];

accum += buf[index+blk_size*6];

accum += buf[index+blk_size*7];

}

}

time = MPI_Wtime() - e1;

time /= iters;

It would be possible to
ush the cache after each loop (by cycling through an-

other cache-sized array). However this would take a while (seconds), and it is more

appealing to just use separate areas of the cache.

3.2.2 Posix threads

By default, global variables are shared between threads. Therefore, to arrange for

threads to work independently on their own sets of data, it is necessary to allocate

some data for each thread:-

struct local_data {

int index;

int buf[csize];

};

A thread may access another thread's local data using an array of pointers:-

local_data ** remote_data;

Each thread then runs its own independent function:-

void* thr_main(void *r)

{

local_data *l = (local_data*)r;

int rank = (int)l->index;

sem_wait(&set_going);

barrier();

time_all(rank);

barrier();

return NULL;

}

21

Synchronisation may be performed using POSIX and pthread semaphores and

condition variables:-

pthread_mutex_init(&mtx, NULL);

pthread_mutex_lock(&mtx);

pthread_mutex_unlock(&mtx);

pthread_cond_init(&cond, NULL);

pthread_cond_wait(&cond, &mtx);

pthread_cond_broadcast(&cond);

sem_init(&set_going, 0, 0);

sem_post(&set_going);

sem_wait(&set_going);

pthread_create(&threads[i], NULL, thr_main, (void*)l);

pthread_join(threads[i], (void**)&status);

thr_setconcurrency(nprocs);

3.2.3 Solaris Threads

Solaris threads are largely identical to Posix threads. The main di�erence concerns

the separation of lightweight processes (LWPs - operating system constructs, and

the unit of concurrency) and threads (user level constructs). Many threads may

share a LWP; or there may be one thread per LWP. The advantage of this two

layer model is that user level context switching is faster than operating system level

switching. The disadvantage is that it adds complexity.

3.2.4 Windows NT threads

Windows NT threads are (relatively) heavyweight operating system level objects.

The startup costs are greater than Posix threads.

3.2.5 The Cray T3D

Shared memory on the Cray T3D di�ers from threads. Each processor runs a

separate copy of the whole program, so N copies of main (), shown in the example

below, are executed. Global variables are not shared; to access another processor's

variables, it is necessary to use shmem get and shmem put. These can only be used

on symmetric data objects, i.e. C and C++ data allocated by shmalloc. Mutual

exclusion locks are simply symmetric variables of type long which are initialised to

zero. A barrier operation is built in.

int buffer[csize];

int lbuf[csize];

22

main()

{

nprocs = _num_pes();

rank = _my_pe();

fill_buffer();

if (rank==0) printf("Shared memory microbenchmarker (%d procs)\n",

nprocs);

barrier();

time_all();

barrier();

if (rank==0) printf("Completed\n");

}

void time_read_remote(int nwords, int iter, double &time)

{

double e1 = MPI_Wtime();

for (int i=0; i<iters; i++) {

shmem_get(lbuf,buffer+i,nwords,1);

}

time = MPI_Wtime() - e1;

}

extern "C" void barrier();

nprocs = _num_pes();

rank = _my_pe();

shmem_get(lbuf,buffer+i,nwords,1);

shmem_put(lbuf,buffer+i,nwords,1);

shmem_clear_lock(long *lock);

shmem_set_lock(long *lock);

shmem_test_lock(long *lock);

shmem_wait(long *ivar, long cmp_value);

3.2.6 Sequent Symmetry

The parallel programming model of the Sequent Symmetry contains elements of

both the Cray model and threads. Only one instance of main is launched; an

m fork(func); is needed to start up the processes. By default, global data is not

shared. Shared data must be enclosed within pragma sequent shared and pragma

sequent shared end, as shown in the example below. Synchronisation is performed

using built in barriers and lock variables. Remote reads may be done by accessing

the shmalloced data of another process.

#include <parallel/microtask.h>

#include <parallel/parallel.h>

23

#pragma sequent_shared

int nprocs;

#define CSIZE (1 << 16)

const int blk_size = 8; /* Cache block size (# of ints) */

const int maxword = 1024;

int iters;

int smallsize,smalliters;

int medsize,mediters;

int largesize,largeiters;

#pragma sequent_shared_end

#pragma sequent_shared

local_data_s **remote_data;

#pragma sequent_shared_end

m_set_procs(nprocs);

remote_data = (local_data_s**)shmalloc(sizeof(plocal_data) *nprocs);

s_init_barrier(&bp, nprocs);

m_set_procs(nprocs);

m_fork(func);

m_kill_procs();

s_lock();

s_unlock();

3.3 Measurement examples

Examples of results obtained by running the shared memory microbenchmarker for

two threads on a workstation are given in Figure 3.1.

The �gures given are average times in nanoseconds to perform the given tasks.

Barrier, timer overhead and loop overhead times are given �rst. The �gures after-

wards are for reads and writes to local main memory, local cache, and the neighbour

process's memory. The allread and allwrite measurements are taken when all

processes are performing the operation concurrently; with the other measurements,

only one process is active.

This set of measurements is just one of many possible such sets of measurements

which could have been carried out. On this machine (a 2-processor workstation

with shared bus) it makes no di�erence whether a processor reads its own or its

neighbour's section of shared memory and local cache reads are about 7 times slower

than local cache writes. These factors may be interesting for the program designer,

but extracting the in
uence that the interconnect (in this case the Sparc MBus)

has on these �gures is not easy. A clue may come in the di�erence between the

write and the allwrite �gures - if it takes longer for all processes to write at the

24

Microbenchmark : Time (ns)

: avg (max)

--

empty loop : 6 (6)

timer() : 4 (4)

barrier : 263 (264)

read_localcache : 69 (69)

allread_localcache : 69 (74)

read_local : 328 (328)

allread_local : 350 (362)

read_neighbour : 350 (350)

allread_neighbour : 359 (362)

write_localcache : 11 (11)

allwrite_localcache : 11 (11)

write_local : 184 (184)

allwrite_local : 235 (235)

write_neighbour : 229 (229)

allwrite_neighbour : 218 (218)

Figure 3.1: Shared memory microbenchmarks for measuring times to local and

remote memory.

25

same time, one could conclude that contention was the cause. But this could as

well be memory bank contention as network contention, and there is no way to �nd

out which is which without opening the computer box and placing logic analyser

probes on the DRAM chips (or similarly instrumenting simulation code). Of course,

the application programmer doesn't particularly care where contention occurs, only

about the possible degraded performance. Some of the measurement problems are

described below.

3.3.1 In
uence of the cache

Since the caches play such an important part in the memory hierarchy performance,

ensuring consistency of their e�ects is vital. The secondary cache size and block

size are inputs to the characterisation routine. To ensure a steady state before each

measurement, the cache is
ushed with a routine:-

void flush_cache(int rank) {

int accum;

for (int i=0; i<csize; i+=blk_size) {

accum += remote_data[rank]->buf1[i];

}

}

This steps through the entire cache reading one word per cache line, to ensure that

the cache starts in a known state.

3.3.2 Inaccuracy of the timer and loop overheads

The time spent in the timer and on loop overheads is measured using an empty loop.

Possible lack of resolution of the timer is dealt with by repeating each measurement a

large number of times. The high resolution timers typically give time in nanoseconds

to the nearest 500ns, so for nanosecond resolution measurements are repeated at

least 1000 times (and typically 1,000,000 times).

3.3.3 Code generation

The measurement code is written in C++; this means that there is a possibility

that the compiler will generate more memory references than would be expected

for a given loop. Rather than code the timing loops in machine code (which would

guarantee the number of memory references, but would require di�erent code for

each architecture), the compiler was set to generate assembler code and this was

checked manually. It could be argued that people never write in machine code

anyway, so this step was unnecessary - what matters is machine performance given

normal code.

26

3.3.4 Memory bank contention

This is di�cult to quantify, as it depends on the precise memory subsystem of the

machine. Because of this, it is left unquanti�ed and assumed to be one of the reasons

di�erent memory access patterns will perform di�erently.

3.4 Presentation of results

One useful way to characterise the performance of operations is in the form of a

logarithmic table (Figure 3.2).

Ten to power minus:

9

8

7 Cache read hit Wr main (if buffered OK)

6 Rd Main memory

5 daxpy100, fprintf

4 daxpy1000

3 thr_create daxpy10000

2 fopen, fclose

1

0

Figure 3.2: Simpli�ed representations of times on a logarithmic scale

Routines were written to carry out these measurements for some common oper-

ations (using �les, reading and writing memory, creating threads). The example in

�gure 3.3 shows results obtained for a measurement on a Sun SPARCstation-20.

This format of results presentation is more useful for rough performance es-

timation than the `exact' timing of operations in nanoseconds - but less useful for

comparing detailed contention issues.

3.5 Summary

This chapter has presented methods for measuring and estimating the microbench-

mark performance of parallel machines, for both shared memory and message passing

programming models. The memory subsystem is the most di�cult part to charac-

terise meaningfully; some of the reasons for this were discussed, and some attempts

at solution were presented. Detailed notes and download details for the software are

available on the shared memory microbenchmarker home page [11].

27

Operation : Order of magnitude (log10(time in secs))

fopen : -1

fprintf (1 char) : -4

printf (string) : -3

fclose : -2

rd main mem 8000 : -6

rd cache mem 8000 : -7

wr main mem 8000 : -6

wr cache mem 8000 : -7

thr_create : -3

daxpy100 : -4

daxpy1000 : -3

daxpy10000 : -2

Figure 3.3: Basic thread microbenchmarks for a single processor machine.

Microbenchmarks can be used in conjunction with simulation models in several

ways; as measurements from a network simulation model, feeding into a simulation

of parallel software and as a simpli�ed workload. The next chapter considers the

last of these approaches, using a microbenchmark style of interface between network

models and workloads.

28

Chapter 4

The Multiprocessor Simulation

Testbed

This chapter describes the simulation testbed developed to allow plug and play

between di�erent simulation models and workloads. The idea was to provide a

clean interface between the two, and to allow development of models and workloads

to proceed independently.

The model and workload are separate programs, compiled into separate libraries

in separate directories, and only linked together at the end to produce an executable

simulation program. This rigid division of the two allows the mix and match process.

For example, a bus model and a random workload could be combined using:

CC bus.a random.a

and the bus model with a memory bank saturating workload using:

CC bus.a memsat.a

The important features of the testbed are:

� Interface speci�cation (between models and workloads).

� Model and workload parameterisation.

� Experimentation and graphing.

4.1 Interface speci�cation

Allowing plug and play between di�erent simulation models is the subject of a

number of initiatives in simulation research, notably with the HLA (High Level Ar-

chitecture) US DoD initiative. Similar concerns abound in the computer industry,

from the Virtual Socket Interface used for mixing and matching cores onto a piece

of silicon, to `software component' technology like CORBA/IIOP and JavaBeans.

29

The crucial aspect is to get the interface right. Here a testbed interface for intercon-

nection network simulations was developed. The model must provide N processors

and N memories. The workload runs on each processor, and may also supply its

own memory behaviour model. The interface de�nes how memory accesses, message

passing and synchronisation take place.

The workload is called from the model, the interface being in the functions:-

void init_workload(p_fn &mf);

void do_workload(int argc, char **argv, int index, int nprocs);

init workload must be called �rst by the model; it reads in the global para-

meters from the input.params �le.

The workload is chosen using the workload parameter set in input.params,

with options including a random workload, a thread workload, a Cray workload, a

memory bank saturation test and a cache test.

The processor calls do workload to perform the work. A workload-speci�c

function to performmemory operations may be provided inmf, for example the Cray

model includes a memory unit which responds to Cray speci�c memory operations.

The workload drives the model using the function:-

void do_cmd(int index, int cmd, int pno, int addr, int size,

int *data);

This performs one of the commands given in Table 4.1.

Command Explanation

SEND C, RECV C Send and receive messages between processors.

READ C, READ R Read memory Command, and Response.

WRITE C Write Command.

TST SET C Read-modify-write Command.

PROC C Local processing Command.

USER C User de�ned Command.

USER R User de�ned Response.

Table 4.1: Interface commands

Note that messages to memories are Commands (such as read requests); messages

in response to commands are Responses.

Memory units may be driven using:-

int read_mem(int index, int a);

void write_mem(int index, int a, int val);

void do_mem_cmd(int index, int cmd, int pno, int addr, int size,

int *data);

Workload speci�c timings may be obtained using:

30

double get_time(int index);

And results may be placed on the trace �le using:-

void put_result(int index, char *string);

4.2 Models

Several network models were constructed for the testbed. The network can be selec-

ted from a bus, a crossbar and a multistage network. Cache models and memories

are also included in the system. The basic parameters are shown in Table 4.2.

Parameter name Description

interconnect 1=Bus, 2=Crossbar, 3=Multistage

usecache include cache (yes/no)

nprocs Number of processors

cmd startup, cmd perword Startup and per word delay (ns) at processor

bus startup, bus perword Startup and per word delay (ns) at bus

mem startup, mem perword Startup and per word delay (ns) at memory

cache size size (in bytes) of cache

cache access time Cache hit time (ns)

cache tag access time Cache tag memory access time (ns)

cache assoc Cache associativity

cache blk size Cache block size

cache tagmems Number of tag memories

The simulation code accesses these parameters using code like:-

double cache_size = get_int_param(0,"cache_size");

double cache_access_time = get_int_param(0,"cache_access_time");

4.2.1 The Bus

The bus entity acts as a passive router of commands, holding for a message depend-

ent time, then passing the command on. Only one command may occupy the bus at

a time. Requests are dealt with on a First Come First Served basis, but no actual

arbitration or priority is implemented apart from this. Its delay parameters are Bus

hold time and Bus time per word.

4.2.2 The Crossbar

The crossbar entity has similar basic delay parameters to the bus. It acts as a

passive router of commands, waiting for each command to arrive and then passing

it on (a message-dependent time) later. It never actually blocks itself.

31

4.2.3 The Multistage Network

The multistage network entity acts as an array of crossbars. Events from processors

or memories are passed into the internal network of switches. When they emerge,

they are sent on to the appropriate processor or memory.

4.2.4 The Processor Node

The processor node parameters are shown in Table 4.2.

Command hold time Command time per word

Send hold time (H

send

) Send time per word

Recv hold time (H

recv

) Recv time per word

Read hold time (H

read

) Read time per word

Write hold time (H

write

) Write time per word

Process cycle time (H

proc

)

User hold time (H

user

)

Table 4.2: Processor node parameters

It always holds for the basic Command hold time, then the delay is computed

depending on the message (Table 4.3).

SEND. Holds H

send

, then sends to network instantly.

RECV. Holds H

recv

, waits for posted send, returns instantly.

READ. Holds H

read

. Sends request. Waits for reply. Returns instantly.

WRITE. Holds H

write

, posts write, returns.

TEST SET. Holds H

read

. Sends request. Waits for reply.

PROCESS. Holds H

proc

� number of words.

USER. Holds H

user

. Sends request. Waits for reply. Returns instantly.

Table 4.3: Processor node behaviour

User code is in:

void do_workload(argc, argv, index, nprocs);

This calls:

void do_cmd(int cmd, int pno, int addr, int size, int *data);

do cmd holds for the command hold time, then behaves as described in Table 4.3.

All hold delays are modelled as startup plus time per word. There is no extra delay

on a read request returning.

32

4.2.5 The Memory

The memory entity holds for the Memory hold time, performs the read or write op-

eration and returns instantly. For user commands (needed to implement more soph-

isticated memory operations than the basic read/write ones provided), it provides

read and write methods which operate instantaneously. User delays may be inserted

by calling the hold method.

4.2.6 The Cache

The parameters for the cache object are given in Table 4.4.

Access time.

Tag access time.

Number of tag memories.

Write policy.

size number of words in cache.

blk size number of words in block.

up width, down width width of up/down buses in words.

up cycle time, down cycle time speed of up/down buses.

Table 4.4: Cache parameters

The possible operations on a cache access are given in Table 4.5.

RD HIT. Passes back contents.

WR HIT. Sets contents. If shared, invalidate others.

RD MISS. Read block.

WR MISS. Read block. Write contents.

INV ADDR. Invalidate block.

Table 4.5: Cache operation

The cache waits for requests from the processor (the \up" connection). It per-

forms a tag lookup, on a tag hit it returns the data. If it is a miss, it sends the

request down the memory hierarchy. The cache also receives invalidate requests

from below.

4.3 Workloads

Workloads were developed to drive the models including a random workload, a

multi-threading workload, a Cray workload, memory bank saturation workload and

a cache testing workload. Workload-speci�c memory operations were incorporated

into the Cray workload to model the Cray memory system behaviour.

33

4.3.1 A Random workload

Each processor sends N �xed length messages to other processors, randomly selected.

Parameters include utilisation, and the length of messages.

4.3.2 A Cray workload

This workload simulates a mix of the standard Cray network packets.

The standard Cray T3D network operation PE noncache rd is used. The

memory is specialised to deal with the di�erent remote memory operations suppor-

ted by the Cray, i.e.:

enum {

PE_noncache_rd, PE_noncache_rd_res,

PE_wr_1word, PE_wr_1word_res,

PE_cache_rd, PE_cache_rd_res,

PE_wr_4word, PE_wr_4word_res,

BLT_rd_1word, BLT_rd_1word_res,

BLT_wr_1word, BLT_wr_1word_res,

BLT_blk_rd, BLT_blk_rd_res,

BLT_blk_wr, BLT_blk_wr_res,

pfetch_rd, pfetch_rd_res,

f_inc_rd, f_inc_rd_res,

f_inc_wr, f_inc_wr_res,

swap, swap_res

};

4.3.3 Memory bank saturation

This workload generates continuous requests to a given number of memory banks.

The behaviour is:-

for (i=0; i<nmsgs; i++) {

pno = index % memmodules;

do_cmd(index, READ_C, pno, addr, size, data);

do_cmd(index, PROC_C, 0, 0, 1, NULL);

}

4.3.4 Threaded workload

This workload performs a set of standard thread synchronisation operations using

mutual exclusion (mutex). The mutex tests are performed with the code:-

// Get lock

34

do {

val = 1;

do_cmd(index, TST_SET_C, mp, ma, 1, &val);

tries ++;

} while (val==0);

// process

do_cmd(index, PROC_C, 0, 0, 5, (int*)"got lock");

// Release lock

do_cmd(index, WRITE_C, mp, ma, 1, &zero_val);

4.3.5 Cache test workload

This workload tests cache hit and miss operations. Parameters include number of

messages and cache size. The workload �lls the cache, performs nmsgs hits then

nmsgs misses.

4.4 Experiments

A number of experiments were run comparing the performance of the workloads on

di�erent networks, investigating the e�ects of including caches, and investigating

the scalability of the networks.

4.4.1 E�ect of cache on network performance

The following graphs show the e�ects of including a cache in the system for the

di�erent networks.

� Bus Figures 4.1 and 4.2.

� Crossbar Figures 4.3 and 4.4.

� Multistage network Figures 4.5 and 4.6.

� Summary graph Figures 4.7 and 4.8.

4.4.2 Scalability measures

Figures 4.9 and 4.10 show the e�ects of varying the number of processors on memory

utilisation and time to complete the workload.

35

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5

T
ot

al
 ti

m
e

workload

Without cache
With cache

Figure 4.1: Total time for the workloads on a bus, with and without a cache.

20

30

40

50

60

70

80

90

100

1 2 3 4 5

M
em

or
y

ut
ili

sa
tio

n

workload

Without cache
With cache

Figure 4.2: Memory utilisations for the workloads on a bus, with and without a

cache.

36

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

T
ot

al
 ti

m
e

workload

Without cache
With cache

Figure 4.3: Total time for the workloads on a crossbar, with and without a cache.

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5

M
em

or
y

ut
ili

sa
tio

n

workload

Without cache
With cache

Figure 4.4: Memory utilisations for the workloads on a crossbar, with and without

a cache.

37

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5

T
ot

al
 ti

m
e

workload

Without cache
With cache

Figure 4.5: Total time for the workloads on a multistage network, with and without

a cache.

40

50

60

70

80

90

100

1 2 3 4 5

M
em

or
y

ut
ili

sa
tio

n

workload

Without cache
With cache

Figure 4.6: Memory utilisations for the workloads on a multistage network, with

and without a cache.

38

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5

T
ot

al
 ti

m
e

workload

Bus (no cache)
Crossbar (no cache)

Mstage (no cache)
Bus (with cache)

Crossbar (with cache)
Mstage (with cache)

Figure 4.7: Total times for all workloads and networks, with and without cache.

20

30

40

50

60

70

80

90

100

1 2 3 4 5

M
em

or
y

ut
ili

sa
tio

n

workload

Bus (no cache)
Crossbar (no cache)

Mstage (no cache)
Bus (with cache)

Crossbar (with cache)
Mstage (with cache)

Figure 4.8: Memory utilisations for all workloads and networks, with and without

cache.

39

0

20000

40000

60000

80000

100000

4 6 8 10 12 14 16

to
ta

l t
im

e
(c

yc
le

s)

nprocs

Bus
Crossbar

Mstage

Figure 4.9: Total time for variable numbers of processors and the same workload.

Note that the bus time grows linearly with number or processors, the crossbar time

is constant, and the multistage network is slower for 4 processors than 8, 12 or

16. This apparently anomalous result is because of increased contention in the 4

processor case.

0

10

20

30

40

50

60

70

80

4 6 8 10 12 14 16

M
em

or
y

ut
ili

sa
tio

n
(p

er
ce

nt
)

nprocs

Bus
Crossbar

Multistage

Figure 4.10: Average memory utilisation vs number of processors. Note the fallo� for

the bus, as the contention means that the memory units are not kept busy. Memory

utilisation remains constant for the crossbar and multistage network (apart from

the special case at 4 processors).

40

4.5 Timing diagrams.

For detailed analysis of the underlying behaviour of each simulation run, timing

diagrams can be produced and inspected (Figure 4.11).

Figure 4.11: A timing diagram showing the detailed behaviour of a single simulation

run. This workload is a sequence of accesses to memory in parallel; at the top

are four processor nodes; they issue memory read requests through the multistage

network (the timelines for the four switches sw0.0, sw0.1, sw1.0, sw1.1 which make

up mstage.) to the memory modules at the bottom.

Figure 4.12: Key for timing diagrams.

The timing diagram (Figure 4.13) shows the top level behaviour of a 4 processor

multistage network system running workload 5. Figure 4.14 shows the equivalent

diagram for 8 processors.

The next two diagrams (�gures 4.15, 4.16) show the detail of the �rst few trans-

actions. Note that the transaction time for the 8 processor case is shorter than for

the four processor case as the tra�c is split between two switches.

4.6 Summary

This chapter has described the interconnection network testbed in detail. The cru-

cial aspect was the interface speci�cation between workload and model. This in-

terface was designed to be
exible, and a Cray T3D memory model was layered on

top of it to demonstrate this
exibility. Results are available from the testbench

in the form of graphs and timing diagrams; the scalability and e�ects of caches on

41

Figure 4.13: Top level timing diagram for 4 processors on a multistage network.

Figure 4.14: Top level timing diagram for 8 processors on a multistage network.

Figure 4.15: Zoomed timing diagram for 4 processors on a multistage network.

42

Figure 4.16: Zoomed timing diagram for 8 processors on a multistage network.

three networks were measured for the di�erent workloads. Future development of

the model could add more sophisticated shared memory models and workloads; this

extension could be incorporated into the existing structure.

43

Chapter 5

The simjava Models

This chapter describes the simjava version of the multiprocessor testbed, including

zoomable timing diagrams for displaying results obtained on the
y, 3D visualisation

and graphs. The HTML version of this report, available on the WWW [4], includes

the applets for some of the models.

5.1 The models

Figure 5.1 shows four CPUs connected to four memory modules via a multistage

switching network. The inputs to the network are at the top: the �rst four ports are

inputs from the CPUs and the next four ports are inputs from the memorymodules.

Along the bottom (output) of the multistage network, again the �rst four ports go

back to the CPUs and the next four ports go to the memories.

Running the simulation (by pressing the Run button) causes the CPUs to gener-

ate their workload. For this simulation model, each CPU does a number of memory

accesses to the �rst memory module. The activity of the network switches can be

seen when their state changes from idle to busy. Similarly a CPU can be idle, read-

ing or waiting for a read request to return, whilst a memory can be either idle or

reading.

Toggling the show trace button switches the animation on and o� (with the

animation switched o�, the simulation runs faster, but since this model has no

results display, there is nothing to see on screen). The show messages button

usually selects whether or not to animate individual messages down links, but this

feature is not enabled in this model. The speed slider selects the time in milliseconds

between animation updates. layout resets the display, run starts the simulation,

pause pauses it and stop stops it.

The purpose of this model is to demonstrate the basic model animation facilities

provided by the testbed. In this case the visual feedback shows that only the �rst

MEM is accessed, and also shows the dynamic pattern of accesses through the

network.

44

Figure 5.1: The basic testbed. The working model can be included into a web page.

Figure 5.2 adds input parameters to the testbed. The e�ects of varying num-

ber of processors, individual switch size, bandwith, latency, workload and

network can all be tried. Figure 5.3 shows a larger network.

Figure 5.4 shows how timing diagrams can be generated on the
y as simulations

run. The timing diagram can be scrolled and zoomed once the simulation has

�nished; it is implemented as a JavaBean software component. Initially the timing

diagram display is empty; as the simulation proceeds, the state changes are displayed

on the diagram as di�erent coloured bars (with the meaning provided by the key

below).

Figure 5.5 shows the results of a multiple run experiment. In this case, the total

time is displayed for di�erent numbers of jobs on the network. Additional parameter

boxes (c.f. �gure 5.2) allow minimum and maximum range values to be entered.

The results can be produced more swiftly by turning the show trace toggle o� to

disable animation.

5.2 3D network models

simjava may also be interfaced to 3D models constructed using VRML2. Figure 5.6

shows a 3D visualisation of the multistage switching network model. VRML allows

more sophisticated visualisations than using 2D pixmaps, and provides good support

for zooming in and out to obtain a visual feel for the behaviour of particular entities,

or the whole system. VRML is a very modular language, and the e�ort required to

45

Figure 5.2: The testbed parameters allow interactive experimentation.

Figure 5.3: The testbed, with a larger number of processors.

46

Figure 5.4: The testbed, with a dynamic timing diagram built in.

Figure 5.5: Dynamic graphs may also be included.

47

build a 3D visualisation is comparable to that required for the equivalent 2D model.

Figure 5.6: 3D model of a multistage network.

5.3 Summary

This chapter has presented a version of the multiprocessor testbed implemented

using the simjava simulation language. The main advantage of using a web medium

is accessibility of models. The obvious disadvantage of using Java for simulation

(compared to C++) is that simulation run times are approximately 8 times slower

than C++ [1]. However, this is o�set by the ease of access to simulation models

(i.e. by clicking on a web link), and the support for visualisation which is better in

Java than C++.

48

Chapter 6

Conclusions

Simulating a complete system incorporating software and hardware requires de-

cisions on the appropriate level at which to simulate. The initial aim of the EMIN

project, of building realistic simulation models of actual networks and running real

software on top of them, proved to be technically feasible but unrealistic in terms

of performance measurements due to the very long simulation times required. The

project therefore concentrated on using microbenchmark performance information

as a practical interface between hardware and software, primarily looking at how

the hardware (and low level software) a�ects the microbenchmarks.

Microbenchmarks provide a software view of the hardware performance, and

are far more relevant than the optimistic �gures of maximum bandwidth which are

usually quoted (and which result in the oft reported `disappointing' performance of

parallel systems in practice). The project looked at measuring these microbench-

marks on real machines, as well as extracting them from simulation models which

provide low level details of the causes of poor performance. This has meant con-

centrating on extracting as much detailed and visual information as possible from

individual simulation runs.

The complexity of the hardware models and the interactions between software

and hardware have made a visual approach essential; it is not su�cient to develop a

`black box' simulation model and hope that it will produce valid results. The simu-

lation testbed developed using HASE provides visual feedback to the user and also

allows performance graphs to be produced from the simulation traces. These graphs

show that, other than in the case of a bus, system performance is in
uenced much

more by the nature of the workload and by cache performance in the processors, for

example, than it is by the type of interconnection network (c.f. Figure 4.7).

In terms of accessiblity of the simulations, it is very appealing to have visual

models available on the World Wide Web; this extends the traditional idea of dia-

grams in printed documents to include `active diagrams' in Web-based documents.

The use of simjava allows models to be distributed and run extremely easily using

the Web [12, 13], and also permits more advanced visualisations of behaviour using

graphical modelling languages such as VRML2. This combination of visualisation

49

and simulation is an e�ective tool for communicating the dynamic behaviour of

complex systems, and has been applied to distributed software systems (such as

transaction protocol analysis) as well as to network modelling.

Acknowledgements

The EMIN project was supported by the UK Engineering and Physical Sciences

Research Council (EPSRC) through Grant GR/K19716. The Hierarchical computer

Architecture design and Simulation Environment (HASE [14]) was developed as part

of the ALAMO project [15] supported by EPSRC through Grant GR/J43295.

50

Bibliography

[1] * F.W. Howell and R. McNab, \SimJava: a discrete event simulation package

for Java". Home page with software, documentation and examples.

http://www.dcs.ed.ac.uk/home/hase/simjava/simjava-1.0

1

[2] * R. McNab and F.W. Howell \Using Java for Discrete Event Simulation" in

proc. Twelfth UK Computer and Telecommunications Performance Engineering

Workshop (UKPEW), Univ. of Edinburgh, 219-228

http://www.dcs.ed.ac.uk/home/hase/simjava/UKPEWpaper.ps

[3] * F.W. Howell and R. McNab, \SimJava: a discrete event simulation librar-

y" in proc. SCS 1998 INTERNATIONAL CONFERENCE ON WEB-BASED

MODELING AND SIMULATION, San Diego, January 1998.

[4] * Evaluation of Multiprocessor Interconnection Networks

http://www.dcs.ed.ac.uk/home/hase/projects/emin/csg38.html

[5] Claudia Wanke, \Very Large Crossbar Switches in Multistage Interconnection

Networks", MSc dissertation, University of Edinburgh, 1993.

[6] D.J. Rogers and R.N. Ibbett. \Xbar: a VLSI Circuit for Bit-sliced Packet

Switching Networks." In Algorithms, Software, Architecture, J. van Leeuwen

(Editor), Information Processing 92, Vol I, 562-570, North Holland, 1992.

[7] R.H. Saavedra, R.S. Gaines, and M.J. Carlton. \Micro benchmark analysis of

the KSR1." In Supercomputing '93, Portland, Oregon, 1993.

[8] * F.W. Howell, \MPI microbenchmarking". Software, documentation and res-

ults for message passing microbenchmarking.

http://www.dcs.ed.ac.uk/home/fwh/timing

[9] * Fred Howell, \Approaches to parallel performance prediction" PhD Thesis,

1996, University of Edinburgh.

http://www.dcs.ed.ac.uk/home/fwh/thesis

1

References marked with a * were produced as part of the EMIN project.

51

[10] * F.W. Howell, \Reverse Pro�ling", Software Engineering for Parallel and Dis-

tributed Systems : Proceedings of the First IFIP TC10 International Workshop

on Parallel and Distributed Software Engineering, Chapman and Hall, 1996.

[11] * F.W. Howell, \SHMEM microbenchmarking". Software, documentation and

results for shared memory microbenchmarking.

http://www.dcs.ed.ac.uk/home/fwh/emin/shmem

[12] * F.W. Howell, \EMIN: the simjava models",

http://www.dcs.ed.ac.uk/home/hase/projects/emin/simjavamodels.html

[13] E.H. Page. \Web Based Simulation at MITRE". A survey of simulation pack-

ages, with the distributed SimJava homepage

http://ms.ie.org/websim/

[14] * HASE home page

http://www.dcs.ed.ac.uk/home/hase

[15] * ALAMO home page

http://www.dcs.ed.ac.uk/home/hase/projects/alamo.html

52

