
Computer Systems Group

T
H

E

U
N I V E R

S
I

T
Y

O
F

E
D

I N B U

R
G

H

Page versus Object Prefetching: A Performance Evaluation

by

Nils Knafla
E-mail: nk@dcs.ed.ac.uk

http://www.dcs.ed.ac.uk/home/nk

CSG Report Series ECS–CSG–43–98

Computer Systems Group August 1998

Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ



Page versus Object Prefetching: A

Performance Evaluation

Nils Kna
a

E-mail: nk@dcs.ed.ac.uk

http://www.dcs.ed.ac.uk/home/nk

Technical Report ECS{CSG{43{98

Department of Computer Science

University of Edinburgh

August 1, 1997

Abstract

In this report we compare the performance of a prefetching page server system

with a prefetching object server system. We simulate the object access pattern

by assigning transition probabilities to the object relationships. According to

the transition probabilities we compute the access probability of pages and

objects. We designed several prefetching techniques for a prefetching page

server and a prefetching object server. We compared the performance of the

prefetching techniques in a simulation.

Keywords: prefetching, object-oriented databases, high performance object

stores, persistence, client/server computing, disk storage management, page

server, object server



1 Introduction

There have been many e�orts to integrate prefetching techniques into databases [6, 14,

23, 7, 9, 17, 11, 15, 16]. Object-oriented database management systems (OODBMSs) and

prefetching techniques can be classi�ed according to the unit of transfer between client and

server. Some OODBMSs transfer pages to the client (page server), for example ObjectStore

[18], Objectivity/DB [21], Shore [1]. Other OODBMSs transfer objects or group of objects

(object server), for example Versant [24], GemStone [8]. Some OODBMSs products, e.g.

GemStone, avoid the problem by executing the request on the server and only return the

result to the client. The unit of transfer for prefetching techniques is dependent on the

system architecture: If the system is a page server the prefetching technique will prefetch

one or multiple pages [17, 11, 15, 16] and in case of an object server one or a group of

objects [6, 14, 23, 9].

All the previous research was conducted in one of these two types but there is no

research, to the best of our knowledge, which accesses a prefetching technique by comparing

its performance in a page server and object server implementation. For both systems the

important problem to solve is how to avoid the I/O bottleneck. Here we have to distinguish

two cases at the server side: disk pages are resident at the server and disk pages are not

resident at the server. In theory, if all pages are resident the Object Prefetching Technique

(OPT) has the advantage that it can put together all the relevant objects for a prefetch

request independent of how these objects are dispersed on pages. If pages are not likely to

be resident, a Page Prefetching Technique (PPT) has the advantage that it requests only

a few high priority disk pages.

Day [9, 19] made an interesting study in the Thor database in which he compared the

performance of a page server system (without prefetching) with an object server system

that prefetches groups of objects. The motivation was that the performance of a single-

object fetching system is unacceptable [10, 13]. Thor transfers groups of objects from server

to client. On receiving a fetch request, a Thor server selects objects to send in response.

The group of objects selected is called a prefetch group. Thor's dynamic selection of the

group contrasts with most distributed object databases which cluster objects statically into

pages and transfers pages. The selection of objects consider various techniques that prefetch

objects in the transitive closure of the current object. It can use depth-�rst or breadth-

�rst search and considers whether the object is resident at client or not. The performance

evaluation was made with the OO7 benchmark [4] using the dense and sparse traversal.

The general result showed that the best technique was bf-cuto�: a simple breadth-�rst

traversal that cuts o� its exploration upon encountering an object already sent to the

client. The page server system performed reasonably well in the dense traversal where the

access pattern was similar to the clustering. The problem with this study is that it does

not give a fair comparison between an object and page server prefetching system because:

1. It assumes that all pages are resident in the server bu�er pool. This is advantageous

to the OPT as explained before.

2. It compares an OPT with a demand paging system instead of a PPT.

1



A general problem with this group prefetching is that if the server is already the bot-

tleneck of the system then the additional selection process of objects costs valuable server

execution time. Another problem is the knowledge about the client cache: either it discard

this information or it needs to be transfered to the server. The advantage is that the

prefetching information is available locally.

The di�erences between a demand object, page or �le servers was studied by DeWitt et

al. [10]. The object server transfers only one object between client and server at a time and

both client and server can execute methods. The page server transfers 4 KB pages. The

�le server uses NFS to access �les and is not relevant to our study. The general result of

this research was that the object-server architecture is relatively insensitive to clustering.

It is sensitive to clients bu�er size up to a certain point, after which the cost of fetching

objects using the RPC mechanism dominates. They conclude that for the object server

it is viable to send a group of objects. The page-server architecture is very sensitive to

the size of the client's bu�er pool and to clustering when traversing or updating complex

objects. While the page-server architecture is far superior on sequential scan queries, the

object server architecture demonstrates superior performance when the database is poorly

clustered or the workstation's bu�er pool is very small relative to the size of the database.

The OO7 benchmark [3] compared the performance of four object-oriented databases.

This test evaluated three page servers (Objectivity/DB, EXODUS [2] and Ontos [22]

1

) and

one object server (Versant). The benchmark structure is very complex and o�ers many

test opportunities. In most of the tests the EXODUS storage manager achieved the best

result. Versant achieves the best results for queries with a hot cache and inserts.

Carey et al. [5] study the interaction of locking and the database architecture. They

presented three page server variants that allow concurrent data sharing at the object level

while retaining the performance advantages of shipping pages to the client. The results

indicated that a page server is clearly preferable to an object server. Moreover, the ad-

aptive page server with object locking was shown to provide very good performance and

outperformed the pure page and object server. Both Carey et al. [5] and DeWitt et al.

[10] study the di�erence in the object/page architecture but not considering prefetching.

The performance evaluation of the three commercial OODBMSs was subject to the

study of [12]. Two of the three systems were page server and one object server. In

contrast to previous benchmark studies this evaluation was performed with a concrete

data warehouse application. One result is that OODBMSs di�er substantially in their

performance, often more than standard benchmarks had shown [3]. Another result is

that numerous tuning possibilities can improve the performance considerably. It came out

that the architecture of the system (page vs. object server) is often more important than

the object-oriented paradigm itself. In the application, the object server has, besides the

superior performance, an additional advantage due to the �ner locking granularity.

In this report we compare the performance of a prefetching page server system with a

prefetching object server system. In section 2 we give an overview over the client/server

architecture. The prefetching algorithms are presented in section 3. Section 3.1 explains

1

Ontos can be used as an object server, and page server or group server.

2



the algorithms for the page server and section 3.2 the algorithms for the object server.

Section 4 presents the environment for the simulation. All the results of the performance

evaluation are given in section 5. Finally, section 6 concludes the work and gives an outlook

to future work.

2 Client/Server Architecture

Client Server

DiskApplication

Page buffer

Object buffer

Page buffer
Network

Objects

a

a

b

c

d

e

Figure 1: Page server architecture

Fig. 3 shows a typical page server architecture. Objects at the client are copied from

the page bu�er into the object bu�er. The network is responsible for the transfer of

demand and prefetch requests. A database page is divided into slots and data. The slots

have information about the data and a pointer to the o�set of the data. The application

program has pointers to other objects. In this architecture the pointer is pointing to the

object via the object bu�er table (in-direct approach). Otherwise a pointer could point

directly to the object (pointer swizzling).

Fig. 7 shows the architecture of an object server. The client has one object bu�er

whereas the server has an object bu�er and a page bu�er. The objects at the server are

copied from the page bu�er into the object bu�er. The transfer between client and server

is an object or a group of objects. The object server stores objects in units of pages or

segments on disk.

3



Page buffer

Client Server

DiskApplication

Network

Objects

Object bufferObject buffer

a

b

c

d

e

a

Figure 2: Object server architecture

3 Prefetching Algorithms

We compare some page prefetching techniques with several variants of object prefetching

techniques. Objects have pointers to other objects. These pointers are transfered to

persistent pointer by an OODBMS. In our study we only consider the static navigation

through these persistent pointers for prefetching.

We assign every pointer a transition probability. All techniques compute the access

probability of objects according to the transition probabilities between objects. Every

transition has an associated probability between 0 and 1.

3.1 Page Prefetching Algorithms

The PPT fetches the page with the highest access probability from the current object being

processed. A detailed description can be found in [16]. A di�erence of this technique to

the technique in [16] is that this algorithm is not using a minimal threshold to start the

prefetch; instead it prefetches always the page with the highest probability and only one

page at the time. It also not considers any negative e�ects of prefetching. We compare

four di�erent techniques:

1. PSDemand

A demand application without any prefetching.

2. PSPrefetch

4



A prefetching application which fetches the highest probability page.

3. PSDemandServerResPages, PSPrefetchServerResPages

Identical applications as PSDemand and PSPrefetch but all the requested pages are

resident in the servers' bu�er pool. No disk request is required.

3.2 Object Prefetching Algorithms

The object prefetching techniques always load a group of objects in advance. The relevant

group of objects is computed by the Chapman-Kolmogorov equations. Let i be the current

object and j another object then the probability P that we will be in object j after n+m

steps

2

is computed by the equations:

P

n+m

ij

=

P

1

k=0

P

n

ik

P

m

kj

for all n;m � 0; all i; j (1)

These equations can be solved by matrix multiplications.

3

If the probability of an object

is higher than a threshold then we insert this object into the request group. We use four

di�erent threshold parameters (0.0, 0.001, 0.01 and 0.1). Another important parameter

for the prediction is the lookahead n. We vary the depth of this parameter from 1 to 19

objects. In our tests we will compare the following object prefetching techniques:

1. OSDemand

On an object fault this technique fetches the missing object and all the objects in

the lookahead n.

2. OSPrefetch

It prefetches all the objects in the lookahead n. In the case of a miss it sends a

demand request to the server.

3. OSDemandServerResPages, OSPrefetchServerResPages

Identical applications as OSDemand and OSPrefetch but all disk pages are resident

in the servers' bu�er.

4. OSServerPrefetch

The server prefetches the page with the highest priority into its bu�er pool. The

prefetch is executed so far in advance that when a request arrives for a page it will

be already resident in the bu�er pool.

2

A step means the traversal from one object to another object.

3

These computations are very expensive and are used to compare equal probability values with a page

server. We do not compare these computation cost in this study.

5



5. OSPrefetchSmallDemand

The prefetch operations are executed like in OSPrefetch but the demand operations

only fetches the page with the faulted object from disk.

6. OSAbortPrefetch

On the arrival of a new prefetch request the server will destroy all previous requests

from that client. It destroys the request itself and all connected requests to the disk.

All the objects that are resident are send to the client from the aborted request.

7. OSServerSendEarly

The server sends all the arriving disk pages to the client. This means one request

could result in many initiated transfers from the server.

4 System Environment

For the performance evaluation we used the simulation language C++Sim [20]. It is a dis-

crete process based simulation language. Every component of our client/server architecture

(client, server, disk, prefetch engine, network) is simulated as a process.

Table 1 shows the shared performance settings of both object and page server, table 2

shows the values of the page server and Table 3 the values from the object server. The page

server has a page fetch time of 12000 �s. If the object server fetches the same amount of

objects from the same page as the page server then its fetch time will be 12100 �s (slightly

higher because of the object overhead involved). The cost of the network transfer depends

on the amount of K-Bytes to be transfered. These variable costs appear at the client side

(for receiving data), at the network (for transferring data) and at the server (for sending

data). We distinguish at the server between costs for processing resident or non-resident

pages. If the page is not resident there is an overhead involved to communicate with the

disk thread.

A prefetch in a page server system must be started 10 processing objects ahead to

achieve the total amount of savings. This is also true for the object server system if it

fetches only one page from disk.

The benchmark structure we used for this test is a simple tree structure. Branch objects

have two pointers to other objects. At each level in the depth of the tree structure one

branch object alternates with an object which has only one pointer to another object. Every

branch object has an associated probability which is varied from 0.5 to 1.0. The navigation

through the object graph was controlled by a draw-operator

5

There are 62 objects on a

disk page (8 KB) and the object size is 132 bytes. In a depth-�rst traversal would access

10 objects from the same page and the 11th would be an object from the next page. We

assume perfect clustering for the objects on disk pages. Prefetching is only used to prefetch

4

This is an optimistic value. We assume disk pages to be stored in clusters which reduces the average

seek time.

5

Given a probability value it decides to continue navigation with reference 1 or 2.

6



Table 1: Shared performance parameter of object/page server

Parameter �s

Object processing time 1200

Fixed network cost for one transfer 1557

Variable network time for one transfer (per kb) 132

Percentage of variable network time client/network/server 45%/18%/37%

Client message send 267

Server message receive 156

Client message receive 156

Average disk access (seek+transfer)

4

5615

Client server-request processing 1530

Table 2: Page server performance speci�cation

Parameter �s

Page fetch time 12000

Server processing (page resident) 1359

Server processing (page not resident) 1664

Table 3: Object server (server side) performance speci�cation

Parameter �s

Initial processing 18

Call disk 105

Processing non-resident page 790

Object lookup 5

Processing after disk arrival 978

7



the objects/pages at the page border. We also assume the bu�er space to be in�nite and

we do not consider any locking in our tests.

5 Performance Evaluation

5.1 Page Server Result

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s

e
d

 t
im

e
 (

s
e

c
.)

PSDemand PSPrefetch

PSDemandServerResPages PSPrefetchServerResPages

Figure 3: Page server result

Fig. 3 shows the result of the page server applications. The performance of the demand ap-

plications is independent of the transition probabilities. At the probability of 1.0 PSPrefetch

(1.206) is almost as good as PSPrefetchServerResPages (1.204). With lower transition prob-

abilities the prediction is less accurate which causes more incorrect prefetches and the

elapsed time increases.

5.2 Object Server Result

The result of the object server with a threshold of 0.0 is presented in Fig. 4. At the

transition probability of 1.0 Lookahead 19 performs best. A lower lookahead reduces the

amount of savings. At the other transition probabilities (0.95 down to 0.5) the elapsed

times for all versions are immutable. The high lookahead applications perform very badly

since they fetch a lot of pages from disk and consume a lot of server time.

The explanation for these times can be found in Fig. 5. This chart shows the number

of disk requests of the di�erent applications and is identical to Fig. 4. The number of disk

8



1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

Lookahead 11 Lookahead 13 Lookahead 15

Lookahead 17 Lookahead 19

Figure 4: Object server / threshold 0.0

100

300

500

700

900

1100

1300

1500

1700

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

N
u

m
b

e
r 

o
f 

d
is

k
 r

e
q

u
e

s
ts

Lookahead 11 Lookahead 13 Lookahead 15

Lookahead 17 Lookahead 19

Figure 5: Object server / threshold 0.0 / Number of disk requests

9



Table 4: Object server / threshold 0.0 / component results

Parameter Lookahead 11 Lookahead 15 Lookahead 19

Server processing time 0.3 1.07 3.74

Disk processing time 0.65 2.32 8.99

Number of object requests 6292 23414 73346

Number of server waits 0 0 493

Number of disk waits 0 297 1583

requests determine the elapsed time of the applications. All the main di�erences of single

components can be found in Table 4. The lookahead 19 application prefetches always 16

pages from the current location of client processing and accesses only one of these pages.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s

e
d

 t
im

e
 (

s
e

c
.)

Threshold 0 Threshold 0.001 Threshold 0.01 Threshold 0.1

Figure 6: Object server / all thresholds

Fig. 6 shows the results of all four threshold applications. All applications with a

threshold smaller and equal than 0.01 have the same elapsed time between the transition

probabilities of 0.75 down to 0.5 and at 1.0. At the other probabilities these application

vary slightly because of the di�erent number of disk and object requests. A higher threshold

reduces the number of object fetches but if it is too high it also aggrandises the number

of demand fetches (e.g. threshold 0.1 has 4 more demand fetches). The threshold 0.01

application shows a high improvement between 0.95 and 0.85. The main di�erence of the

application with the 0.95 transition probability can be seen in Table 5. The threshold 0.01

application starts the prefetch just two objects before access whereas threshold 0.1 has the

10



Table 5: Object server / transition probability 0.95 / threshold 0.01 and 0.1

Parameter Threshold 0.01 Threshold 0.1

Prefetch distance 2 10

Demand fetch time 0.109 0.335

Prefetch wait time 0.862 0.000

Number of disk requests 109 127

Number of object requests 3094 1386

Number of object demand group requests 5 27

best performance with a prefetch distance of 10 objects. The Threshold 0.01 program has

a short demand fetch time but a long prefetch wait time as it starts the prefetch too late.

It fetches many objects with a few disk requests. The threshold 0.1 program prefetches

more incorrect pages because of the prefetch distance.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

OSDemand OSPrefetch

OSDemandServerResPages OSPrefetchServerResPages

Figure 7: Object server result

Fig. 7 we see the �nal result of the object server performance. The OSDemand has

a constant performance; only at the transition probability of 1.0 it is slightly better be-

cause of fewer object fetches. OSPrefetch has a sharp increase in performance until the

probability of 0.8 and then stays constant. The explanation for this is the same as the

di�erence between the threshold 0.01 and threshold 0.1 program in Fig. 6. Before the

0.8 transition probability the prefetch distance is 10 and savings are high; after 0.8 the

distance is 2. OSDemandServerResPage shows similar results to OSDemand. OSPrefetch-

11



ServerResPage performs best at all transition probabilities. It increases slightly with lower

transition probabilities because of lower object destination probabilities and a later start

of the prefetch.

5.3 Object and Page Server Comparison

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

PSDemand PSPrefech

OSDemand OSPrefetch

PSDemandServerResPages PSPrefetchServerResPages

OSDemandServerResPages OSPrefetchServerResPages

Figure 8: Object/page server comparison

In Fig. 8 all previously presented results are compiled into one graphic. OSPrefetch is

worse at every transition probability than PSPrefetch. The highest di�erence is at 0.8

when OSPrefetch uses a prefetch distance of 2 and PSPrefetch still achieves the best result

at a distance of 8. The result is di�erent for the applications where the pages are resident

at the server. OSPrefetchServerResPages is able to select all the important objects for an

object group without doing any expensive page fetches. PSDemand and OSDemand are

almost identical: at 1.0 OSDemand is slightly better because of less object fetches and

after 1.0 PSDemand improves as it has less overhead in object management. OSDemand-

ServerResPages clearly performs better than OSPrefetchServerResPages in all probabilities.

5.4 Object Server Performance Optimisations

In the previous object prefetching technique the client send many prefetch requests to the

server. The server is processing this request as long all the objects are resident at the server

and the disk request arrived. This means that the server could process several requests

from the client at the same time. Some of these requests could be out of date, i.e. the

12



1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

PSPrefetch OSPrefetch

OSAbortPrefetchNoDemand OSAbortPrefetch

Figure 9: Server prefetch abort

applications' navigation is ahead of the prefetch request or the application changed its

navigation totally.

We developed the two algorithms (Fig. 9) OSAbortPrefetch and OSAbortPrefetchNoDe-

mand that abort all previous requests from the client at server on the receipt of a new

request. It will abort all the disk requests from the server request and the server request

itself. OSAbortPrefetch aborts also previous demand requests from the client whereas OS-

AbortPrefetchNoDemand only aborts previous prefetch requests. The performance of both

abort versions are very close to the OSPrefetch version. Between the transition probabil-

ities of 0.7 and 0.8 both abort versions perform badly. The reason for the performance is

shown in Table 6.

The abort prefetching application does not check which objects are currently prefetched.

It computes the relevant objects from the current context and sends this request away. This

approach obviously increases the number of object requests. This server and disk time is

also higher because of the processing overhead at the server. More object requests involve

more disk requests and the disk system is busy with requests that are later not needed

because of an abort. Every time a served disk requests arrives at the server, the server will

check if the request is aborted. If yes, it sends all the objects that are resident to client

and reduces the open request list from the client. The overhead for the server processing

and the start of the network increases the server time. OSAbortPrefetchNoDemand and

OSAbortPrefetch do better than PSPrefetch and OSPrefetch at the 0.5 probability but

cannot improve performance at the other probabilities.

The object server showed its superiority when all pages are resident at the server. For

times when the server workload is low the server could prefetch pages from disk according

13



Table 6: Object prefetching without and with abort (transition probability: 0.7 / prefetch

distance: 2 / threshold: 0.01)

Parameter No Abort Abort

Demand fetch time 0.109 0.097

Prefetch wait time 0.941 1.151

Total server time 0.354 1.850

Total disk time 0.646 2.184

Number of disk requests 115 389

Number of object requests 6090 15101

Number of prefetch group requests 99 199

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
s
 (

s
e
c
.)

PSPrefetch OSPrefetch OSServerPrefetch

Figure 10: Server prefetching

14



to the prefetch information from a client. OSServerPrefetch starts a disk requests after

the service of a prefetch request. The server prefetches the highest probability page of an

additional lookahead that is not in the current request. Server prefetches have an extra

low priority queue at the disk. If the queue still has requests from the same client it will

delete all old requests. Fig. 10 demonstrates that OSServerPrefetch perform much better

than OSPrefetch and very close to PSPrefetch. Of course, PSPrefetch could also do server

prefetching. At the moment OSServerPrefetch fetches only one page at a time from the

disk. Fetching multiple pages could provide in an even better result. Fig. 11 shows that

most of the savings can be achieved at higher transition probabilities because these are the

best prediction possibilities. Also the applications with the shorter distances achieve the

best savings. The distance 10 application cannot achieve any improvement.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1
.
0
0

0
.
9
5

0
.
9
0

0
.
8
5

0
.
8
0

0
.
7
5

0
.
7
0

0
.
6
5

0
.
6
0

0
.
5
5

0
.
5
0

Transition probabilities

S
av

in
gs

 in
 e

la
ps

ed
 ti

m
e

 (s
ec

.)

Distance 10

Distance 8

Distance 6

Distance 4

Distance 2

Figure 11: Server prefetching improvements for threshold 0.0

Another performance optimisation for the object server is the separate sending of pages

to the client after receiving them from disk. This disk access is the most expensive part

of the object fetch. The client could be waiting already for objects of that page and

therefore it would make sense to start a network transfer after the disk receipt. Fig. 12

presents the result of this test. OSServerSendEarly shows a good improvement between the

transitions probabilities of 0.65 and 0.85 but cannot achieve the result of PSPrefetch. The

best improvement is at 0.85. Table 7 shows the di�erences of an 0.85 version. The prefetch

wait time of the send early version is much lower because this version does not wait for

the complete service at the server. The disadvantage of the send early application is that

it increases the network service time with a �xed cost for every message. The server time

is also increased because of the encoding of the message.

15



1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

PSPrefetch OSPrefetch OSServerSendEarly

Figure 12: Server send early

Table 7: Object prefetching - server send early (transition probability: 0.85 / prefetch

distance: 10 / threshold: 0.1)

Parameter Normal object prefetch (sec.) Send early (sec.)

Prefetch wait time 0.154 0.009

Total network time 0.049 0.068

Total server time 0.424 0.462

16



1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Transition Probabilities

E
la

p
s
e
d

 t
im

e
 (

s
e
c
.)

PSPrefetch OSPrefetch OSPrefetchSmallDemand

Figure 13: Small demand fetch

Fig. 13 shows the result of OSPrefetchSmallDemand application. It performs worse

than OSPrefetch until the transition probability of 0.85 but then performs better than

OSPrefetch. Before the probability of 0.8 the demand fetch can predict the next objects

over the demand page accurately and therefore fetches more useful objects in one request

and reduces the network load. After 0.8 prediction is not so accurate and the demand fetch

requests many unnecessary objects which can be avoided with OSPrefetchSmallDemand. It

cannot achieve the performance of PSPrefetch.

6 Conclusions and Future Work

We compared the performance of a prefetching page server with prefetching object server.

We simulated the object access pattern by assigning transition probabilities to the object

relationships. According to the transition probabilities we compute the access probability

of pages and objects. The general result of our simulation is that the page server performs

better than the object server if pages are not resident at the server. If all the pages are

resident at the server the object server performs best. We presented some performance

optimisations for the object server. The most e�ective technique was to do server pre-

fetching. We still have to combine the optimisations for a version to compare with a page

server.

In the future we will enhance this study by using di�erent clustering levels. If object

clustering is good then the page server has a performance advantage, otherwise the object

server has an advantage. We would also like to test the e�ect of bu�er replacement on the

17



architectures.

References

[1] M.J Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuli�e, J.F. Naughton,

D.T. Schuh, M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, and M.J. Zwilling.

Shoring Up Persistent Applications. In Proc. of the ACM SIGMOD Int. Conf. on

Management of Data, pages 383{394, Minneapolis, Minnesota, May 1994.

[2] M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T. Schuh,

E.J. Shekita, and S.L. Vandenberg. The EXODUS Extensible DBMS Project: An

Overview. In S. Zdonik and D. Maier, editors, Readings in Object-Oriented Database

Systems, pages 474{499. Morgan Kaufmann, 1990.

[3] M.J. Carey, D.J. DeWitt, and J.F. Naughton. The OO7 Benchmark. Technical Re-

port Technical Report 1140, Computer Science Department, University of Wisconsin

- Madison, January 1994.

[4] M.J. Carey, J.J. DeWitt, and J.F. Naughton. The OO7 Benchmark. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data, pages 12{21, Washington, USA,

May 1993.

[5] M.J. Carey, M.J. Franklin, and M. Zaharioudakis. Fine-Grained Sharing in a Page

Server OODBMS. SIGMOD Records, 5:359{370, May 1994.

[6] E.E.-L. Chang. E�ective Clustering and Bu�ering in an Object-Oriented DBMS.

PhD thesis, Computer Science division, EECS department, University of California

at Berkeley, 1989.

[7] J.R. Cheng and A.R. Hurson. On the Performance Issues of Object-Based Bu�ering.

In Proc. First Int. Conf. on Parallel and Distributed Information System, pages 30{37,

Miami Beach, Florida, December 1991.

[8] GemStone Servio Logic Corporation. Product Overview, February 1991.

[9] M.S. Day. Client Cache Management in a Distributed Object Database. PhD thesis,

Massachusetts Institute of Technology, Laboratory for Computer Science, 1995.

[10] D.J. DeWitt, D. Maier, P. Futtersack, and F. Velez. A Study of Three Alternative

Workstation-Server Architecture for Object-Oriented Database Systems. In Proc. of

the Sixteenth Int. Conf. on Very Large Data Bases, pages 107{121, Brisbane, Aus-

tralia, 1990.

[11] C.A. Gerlhof. Optimierung von Seicherzugri�skosten in Objektbanken: Clustering und

Prefetching. PhD thesis, Faculty for Mathematics and Computer Science, University

of Passau, 1996.

18



[12] U. Hohenstein, V. Ple�ner, and R. Heller. Evaluating the Performance of Object-

Oriented Database Systems by Means of a Concrete Application. In Proc. of the 8th

Int. Workshop on Database and Expert Applications, Toulouse, France, September

1997.

[13] A.L. Hosking and J.E.B. Moss. Object Fault Handling for Persistent Programming

Languages: A Performance Evaluation. In Proc. of the Conf. on Object-Oriented

Programming Systems, Languages and Applications, pages 288{303, Washington, DC,

September 1993.

[14] T. Keller, G. Graefe, and D. Maier. E�cient Assembly of Complex Objects. In Proc.

of the ACM SIGMOD Int. Conf. on Management of Data, pages 148{157, Denver,

USA, May 1991.

[15] N. Kna
a. Speed Up Your Database Client with Adaptable Multithreaded Prefetching.

In Proc. of the Sixth IEEE International Symposium on High Performance Distributed

Computing, pages 102{111, Portland, Oregon, August 1997. IEEE Computer Society

Press.

[16] N. Kna
a. Analysing Object Relationships to Predict Page Access for Prefetching. In

Proc. of the Eighth Int. Workshop on Persistent Object Systems: Design, Implement-

ation and Use (POS-8), Tiburon, California, August 1998.

[17] P. Krishnan. Online Prediction Algorithms for Databases and Operating Systems. PhD

thesis, Department of Computer Science, Brown University, 1995.

[18] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore Database System.

Communications of the ACM, 34(10):50{63, October 1991.

[19] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,

A.C. Myers, and L. Shira. Safe and E�cient Sharing of Persistent Objects in Thor.

In Proc. of the ACM SIGMOD/PODS96 Joint Conf. on Management of Data, pages

318{329, Montreal, Canada, June 1996.

[20] M.C. Little and D.L. McCue. Construction and Use of a Simulation Package in C++.

Technical Report 437, Department of Computing Science, University of Newcastle,

Newcastle upon Tyne, NE1 7RU, UK, July 1993.

[21] Objectivity/DB Technical Overview, 1994.

[22] ONTOS, Inc. ONTOS Object Integration Server (ONTOS OIS) Integrating Objects

with Relational Databases. Technical Overview, 1995.

[23] M. Palmer and S.B. Zdonik. Fido: A Cache That Learns to Fetch. In Proc. of the 17th

Int. Conf. on Very Large Data Bases, pages 255{264, Barcelona, Spain, September

1991.

19



[24] Versant. ODBMS Performance Issues - A Versant Technical Overview, 1994.

20


