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Abstract

The Hierarchical PRAM (H-PRAM) [5] model is a dynamically partitionable PRAM, which charges for com-

munication and synchronization, and allows parallel algorithms to abstractly represent general locality. In this

paper we show that the H-PRAM can be implemented e�ciently on a two-dimensional mesh. We use the Peano

indexing scheme to hierarchically partition the mesh. Multiple sub-PRAMs of the H-PRAM are simulated on

irregular sub-meshes. For an H-PRAM program of cost T , the overall CRCW H-PRAM simulation runs in time

constant in T with high probability. The simulation is dynamic, i.e. it does not depend on prior knowledge of a

program's speci�c hierarchical con�guration, which may be data dependent.

1 Introduction

In parallel computing, a model of computation has a di�cult task. It must mediate between the con
icting

requirements of abstraction (ease of use) for program design/analysis, and cost/resource details of realistic archi-

tectures. In other words, it must abstract away the implementation details inherent in architectural views, while

truly re
ecting the essential costs of parallel computation on those architectures [13].

The PRAM model is accepted as a good tool for parallel algorithm research, but fails to even abstractly

represent realistic architectures since it ignores communication and synchronization costs. In recognizance of this

fact, many other models have been proposed (see [2], and the references therein), none of which have yet caught

on. In various ways they try to balance simplicity of use and re
ectivity of architectural costs, and may be roughly

classi�ed into three types:

� PRAMs with locality (simplicity = shared memory, re
ectivity = locality), e.g. H-PRAM, YPRAM, BDM,

LPRAM, BPRAM.

� Global message passing models (simplicity = global address space, re
ectivity = message passing), e.g.

BSP, LogP, and many more.

� \Adjusted" PRAMs with \architectural" features, such as asynchrony (many variants of Asynchronous

PRAMs) or memory queues to represent contention (QRQW PRAM).

Comparisons and critical analyses of various models motivating the study of the H-PRAM is given elsewhere in

detail [3, 5], so we will not discuss these issues here. See also [2].

The Hierarchical PRAM (H-PRAM), introduced in [5] and [6], is the most general of the \PRAM with locality"

type models (i.e. has the least restrictions on partitioning the memory into sub-memories). The H-PRAM is a

PRAM whose instruction set is extended by a partition instruction, which allows the hierarchical organization of

�
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processors and memory into groups. Each group works as a separate synchronous \sub-PRAM", asynchronously

and fully independently from the others. The model accounts for communication and synchronization costs,

which are functions of the group size. An architecture implementing the H-PRAM must be able to hierarchically

partition itself into any number of independent sub-architectures, where communication and synchronization costs

are functions of sub-architecture size.

The aim of this paper is to demonstrate that a P -processor H-PRAM can be implemented e�ciently on a P -

processor mesh (the re
ectivity shown in [5] is rather abstract). This is important since a model of computation

needs to consider the long-term in addition to the current generation of architectures, and considerations of the

physical limitations of parallel computation (e.g. [1]) indicate that future architectures will be mesh-like.

The analysis in this paper is up to constant factors that are small compared to the rest of the formula under

consideration. However, we cannot use the standard big Oh notation since, for analysis simpli�cation purposes,

we bound the number of processors from above (by the number of particles in the universe). Use of big Oh

notation requires that no upper bound be placed on the values that the parameters may take. We mark this

distinction by using the notation

^

O() instead of O().

The H-PRAM simulation given in this paper is an algorithm that can interpret a given H-PRAM program

instance. We distinguish \program instance" from \program" since we are only concerned about those instances

of a program that are relevant to practice. Speci�cally, the set of possible inputs to the simulation algorithm is

a set of program instances and the input size corresponding to a speci�c input is the H-PRAM cost complexity

of that program instance. The notion \program" would imply a non-�xed cost complexity of the simulation

depending on the size of the input to the program being simulated, that we are not interested in. However, in the

interest of avoiding clumsy phrasing the rest of the paper will use the term \program", assuming that the reader

understands this to mean \program instance".

As the simulation algorithm cannot know in advance how the H-PRAM hierarchy will grow and contract

according to data dependencies, it is necessary that the mapping of the H-PRAM to the mesh be a dynamic

one. In other words, the mesh must be able to partition into any number of arbitrarily-sized sub-meshes so

that sub-PRAMs map to sub-meshes. Further, the sub-meshes must be of a shape that they well-approximate

\square" sub-meshes of the same size, in that the diameter of a sub-mesh that sub-PRAM maps to is

^

O(

p

p)

for a p-processor sub-PRAM. The Peano indexing scheme [7] nicely provides these criteria. This paper gives a

mapping of the H-PRAM to a Peano-indexed mesh, and then considers a randomized H-PRAM simulation where

sub-PRAMs are simulated on irregular sub-meshes via an adaptation of Ranade's randomized PRAM simulation

on a butter
y [11] (the details of this are omitted because of page limitations, but can be found in the full version

[4]). It then considers the recursive simulation of multiple sub-PRAMs in parallel, assuming the existence of a

high probability sub-PRAM on sub-mesh simulation method. The overall CRCW H-PRAM simulation runs in

time

^

O(T ) for an input program of H-PRAM complexity T with high probability, even though all the concurrently

operating sub-PRAMs only achieve their time bound probabilistically.

Section 2 of the paper reviews the H-PRAM and outlines the Peano indexing scheme for the mesh. Section 3

gives the results on simulating PRAMs on irregular sub-meshes and analyzes the overall simulation.

2 Dynamic mapping of the H-PRAM to a mesh

Structurally, the H-PRAM [5] is a PRAM which can recursively partition itself into sub-PRAMs, giving rise to

a hierarchy of sub-PRAMs (in this paper, any kind of CRCW PRAM). A P -processor H-PRAM is a P -processor

PRAM extended by a partition instruction:

partition f p

1

: Algorithm-1 (parameter-list);

p

2

: Algorithm-2 (parameter-list);

...

p

Q

: Algorithm-Q (parameter-list) g

where the p

i

are positive integers with

P

Q

i=1

p

i

= P . (A notational note: we use upper case P andM to denote the

processor and memory resources of the H-PRAM, and lower case p and m to denote the resources of a sub-PRAM

in the hierarchy.)



The operation partitions the P processors of the original PRAM into disjoint subsets of p

i

processors running

the speci�ed algorithms. We assume partitioning of processors causes the memory to be partitioned proportion-

ately (M=P = m=p), this was called the \private H-PRAM" variant in [5]. The sub-PRAMs operate asynchron-

ously from each other and synchronize at the termination of the partition instruction. Independently executing

sub-PRAMs do not interact, i.e. all communication is restricted to occur within each sub-PRAM.

The sub-PRAM sub-algorithms may themselves have partition instructions, giving rise to a recursive partition-

ing of the H-PRAM. The hierarchical structure of the overall computation can be represented by a series{parallel

graph, where \forks" correspond to the starts of partition instructions and \joins" correspond to the terminations

of them [5].

We assume the case of dynamic partitionability here, i.e. the parameters Q and p

i

in the partition instruction

need not be known in advance. While the algorithms in [6] are static, dynamic partitioning is more general, as it

allows hierarchies to depend on data values.

Before de�ning the H-PRAM cost measure, we need to �x some terminology. In this paper, the term step of

a sub-PRAM refers to a step in that sub-PRAM. In contrast, a partition hyperstep includes the activities in all

sub-PRAMs hierarchically produced by a partition instruction. A step is either a usual PRAM step, where each

processor may independently carry out a computation, communication or idle operation, or it is a partition step,

i.e. the \invocation" of a partition hyperstep. To avoid confusion, the notion cost will always be tied to the

charged H-PRAM cost of an algorithm, in contrast to the simulation time.

The evaluation of algorithmic complexity for the H-PRAM is di�erent than for the (unit cost) PRAM in that

communication and synchronization operations are charged with their realistic cost as de�ned by the underlying

architecture. See [5, 6] for complexity analysis details. Summarizing for the purposes of this paper, we charge

p

p for every step in a p-processor sub-PRAM (whether communication, computation, or partition).

The complexity of an H-PRAM program is de�ned the obvious way: Costs caused by successive steps within

the same sub-PRAM sum up, while the cost of a partition hyperstep is equal to the maximal cost of its sub-sub-

PRAM programs. The cost of the sub-sub-PRAM programs is determined recursively, in the same manner. In

this paper, we will also use an equivalent, but sometimes more convenient, de�nition determining the cost T of a

program:

T = max

paths

0

@

X

steps on that path

s

size of sub-PRAM

executing that step

1

A

where a path is any path through the series{parallel graph representing the program structure.

The H-PRAM model does not impose any constraints on the number and sizes of the sub-PRAMs created in a

partition step other than those imposed by the available number of processors. This freedom for the programmer,

on the other hand, brings along di�culties for the simulation task. In contrast to the realization of the YPRAM

[14], we cannot solely rely on the fact that a square sub-mesh can be recursively partitioned into four square

sub-meshes. Instead, we need to be able to partition into any number of arbitrarily-sized sub-meshes, carried out

dynamically at run-time. Though the sub-meshes will not generally be square, each p-processor sub-mesh must

have diameter

^

O(

p

p), and permit PRAM simulation on it in

^

O(

p

p) mesh routing steps per PRAM step. The

Peano indexing scheme (see [7]) allows us to meet these criteria.

Consider meshes of size 2

n

� 2

n

, integer n. This restriction is not serious, as a 2

n

� 2

n

-processor mesh can

simulate any q � q -processor mesh (2

n

� q < 2

n+1

) in time O(1) per step [8].

The Peano scheme indexes a mesh according to the pattern

which is recursively applied, such that an 8� 8 -mesh is indexed



22 23 26 27 38 39 42 43

21 24 25 28 37 40 41 44

20 19 30 29 36 35 46 45

17 18 31 32 33 34 47 48

16 13 12 11 54 53 52 49

15 14 9 10 55 56 51 50

2 3 8 7 58 57 62 63

1 4 5 6 59 60 61 64

The trick with the scheme is that any two nodes whose indices di�er by d are at Manhattan distance

^

O(

p

d)

in the array.

Consider a partition instruction partitioning a p-processor sub-PRAM into p

0

1

; p

0

2

; : : : p

0

Q

-processor sub-sub-

PRAMs. Assume the p-processor sub-PRAM is mapped to contiguously-indexed mesh nodes v

1

: : : v

1

+ p. Then

the p

0

1

-processor sub-PRAM is mapped to mesh nodes v

1

: : : v

1

+ p

0

1

� 1, the p

0

2

-processor sub-PRAM to v

1

+

p

0

1

: : : v

1

+ p

0

1

+ p

0

2

� 1, etc. Note that this very simple method works with hierarchically nested partitions, and

can be applied dynamically.

3 A randomized H-PRAM simulation

In the full version of this paper [4], we describe how the sub-meshes constructed in Section 2 can simulate a

sub-PRAM by proving the following Theorem.

Theorem 3.1 Provided the memory is hashed via a universal hash function, each step of a p-processor m-memory

sub-PRAM can be simulated on a sub-mesh (consisting of contiguously-indexed processors) of a Peano-indexed

mesh in time

^

O(

p

p) with probability 1� p

�k

, for any k. The memory requirements per mesh node are

^

O(m=p).

It is quite obvious that a simulation with the properties stated in this Theorem exists. A straightforward simula-

tion would map everything (memory locations/requests) into a square \kernel" of the sub-mesh. CRCW PRAM

simulation in a square mesh can be done by sorting and combining the requests in a prephase, and afterwards

simulating an EREW PRAM. For EREW PRAM simulation, the (square) mesh is modeled by a leveled network

[9], and Ranade's technique of universal hashing combined with deterministic constant{queue{size routing [9],

[10], [11] applied. In the full paper, we show that the leveled network can be associated with the whole sub-

mesh (not only the kernel). Additionally, we show how to omit the prephase by combining during routing, while

guaranteeing constant queue size. (The bound derived e.g. in [11] is actually an asymptotic bound, but as the

suppressed constant is relatively small, we can also take it as an

^

O()-bound.)

In the following, we assume to be given any method leading to Theorem 3.1, e.g. the method described in the

full version or some other method. We will prove that, given a set of reasonable assumptions on the properties of a

time T CRCW H-PRAM program, the overall H-PRAM simulation runs in

^

O(T ) time with high probability, even

though the concurrently operating sub-PRAMs only achieve their time bounds probabilistically. Note that the

assumptions restrict the applicability of the analysis method only, not those of the simulation. The assumptions

are:

1. We are to simulate a P -processor M -memory H-PRAM program on a P -processor

^

O(M )-memory mesh.

The mesh can be hierarchically partitioned into any number of arbitrarily-sized sub-meshes. Provided

the memory is initially hashed, each p-processor

^

O(m)-memory sub-mesh is able to simulate a p-processor

m-memory sub-PRAM such that

� each sub-PRAM step is simulated in time

^

O(

p

p) with probability at least 1 � 1=p

3

, and in time

^

O((m=p)

p

p) otherwise, and

� the simulation time of each step is statistically independent from other steps.

2. For all sub-PRAMs: number of steps =

^


((m=p) � number of partition steps).



3. For all sub-PRAMs: p � m=p � 45.

4. For all partition instructions dividing a p-processor sub-PRAM into p

0

1

; p

0

2

; : : : p

0

Q

-processor sub-PRAMs,

p=p

0

i

� 16 holds for all 1 � i � Q.

5. Depth of the hierarchy created by the H-PRAM program � 67.

Assumption 1 is justi�ed by the previous section and Theorem 3.1. The value 1 � 1=p

3

is just a special case

of the result of Theorem 3.1 (setting k = 3), and simulation time

^

O((m=p)

p

p) is guaranteed by switching to

deterministic simulation if a step takes too long. Statistical independence can be maintained by choosing a new

hash function and rehashing after each unsuccessful step. In the case of a \bad" hash function (i.e., a function

that hashes more than

^

O(log p) PRAM memory cells into the same group of processors in secondary hashing, see

[11] App. A), we �rst execute the next PRAM instruction (deterministically) before trying another hash function

(to avoid a step takes arbitrarily long). As a hash function is bad with probability 1=p

3

only, Assumption 1

follows.

In H-PRAM simulation, whenever a sub-PRAM is created its memory needs to be hashed, and when it �nishes

its memory needs to be unhashed. Also, when a partition instruction is initiated, the sub-PRAM memory needs

to be unhashed, and when the instruction terminates its memory needs to be rehashed. Each hashing/unhashing

has cost

^

O((m=p)

p

p). Assumption 2 secures that the cost of these hashings/unhashings is subsumed by the

charged H-PRAM cost. Assumption 2 slightly restricts the set of H-PRAM programs covered by the analysis of

the simulation method. Programs which undertake memory management on m elements (which would appear

to be the normal case for non-trivial problems since programs need to organize memory to take advantage of

locality) will necessarily execute

^


(m=p) memory reference steps prior to every partition instruction, implying

Assumption 2.

If m=p � 45 is not ful�lled in Assumption 3, switch to deterministic simulation, which then takes time

^

O(

p

p).

The requirement p � m=p secures that the cost of hashing does not become too large with respect to its frequency.

Hashing in small PRAMs would be a waste; one could switch to deterministic simulation and charge

^

O(p) per

step. Assumption 3 touches on the question of whether communication cost is best represented by number of

processors p or memory per processor m=p when p � m=p (i.e. interprocessor communication and I/O).

Assumptions 4 and 5 do not seem to be essential, but re
ect some rough estimations employed by our proof

technique. In any case, we expect most H-PRAM programs to be structured such that partition instructions either

ful�ll Assumption 4 or violate it for all sub-PRAMs created in the partition. In the second case, Assumption 4

can be established by omitting the partition and running the sub-PRAMs concurrently in the p-processor PRAM.

This modi�cation increases the cost per sub-PRAM instruction from

p

p

0

i

to

p

p < 4

p

p

0

i

, and hence the cost

of the program by at most the factor 4. Taking into account that the number of H-PRAM processors can not

be higher than the number of particles in the universe (10

80

as stated in [1]), Assumption 5 is a consequence of

Assumption 4 since log

16

10

80

� 67.

The analysis given in this section is somewhat simpli�ed in that it assumes certain values to be integers, and

others to be multiples of some other values, though this need not be the case. The exact analysis is given in the

full version of the paper [4].

We will analyze an idealized simulation characterized by the following properties.

1. Assumption 1 is interpreted as follows: The cost of simulating the sub-PRAM step is exactly s

p

p (in the

\successful" case) or s(m=p)

p

p (in the \unsuccessful" case), for some �xed constant s. Also, assume the

successful case occurs with probability exactly 1=p

3

.

2. Whenever a \straightline sub-program segment" (i.e. with no partition instruction) of cost l has simulation

time less than 2sl, let the simulation take time 2sl.

Note that the idealized simulation is not performed, but is introduced for purposes of analysis only. In the present

context, we understand the simulation as an algorithm whose input is an H-PRAM program (instance) and that

needs a certain amount of running time, depending on the input size which is the cost T of the program (instance).

The only properties of the idealized simulation we are interested in are that it is operating on the same set of

inputs and takes at least the same time on all inputs as does the real simulation (which is clearly the case). The

semantics of the idealized simulation is irrelevant here, in fact it can be any meaningless algorithm.



The most important technical result of this section will be the following Theorem.

Theorem 3.2 For each H-PRAM program B of cost T , there exists an H-PRAM program A of cost

^

O(T ) such

that

� A does not contain partition instructions, and

� The probability A is simulated in

^

O(T ) is at most the probability that B is simulated in

^

O(T ).

Theorem 3.2 forms the basis to establish our main result:

Theorem 3.3 Under Assumptions 1-5, an H-PRAM program of cost T can be simulated on the mesh in time

^

O(T ) with high probability. The probability goes to 1 as T goes to in�nity.

Proof: From Theorem 3.2, consider the corresponding H-PRAM program A which does not have partition

instructions, i.e. a PRAM program of cost T

0

=

^

O(T ). Let T

0

= t(M=P )

p

P , for any t � 1, and allow the

simulation to take time cT = c

0

sT

0

. The bound is met if there are at most t(c

0

� 1) rehashings. The claim follows

from

Prob(#rehashings � t(c

0

� 1))

�

0

@

t(M=P )(e=P

3

)

t(c

0

� 1)

1

A

t(c

0

�1)

�

0

@

e

P

2

(c

0

� 1)

1

A

t(c

0

�1)

:

where the �rst inequality derives from the Cherno� bound stated in [12].

3.1 Proof of Theorem 3.2

First, Lemma 3.4 will restrict the set of H-PRAM programs which need to be considered in the proof of

Theorem 3.2. We say that a sub-PRAM is immediately created in a partition step, if it is created there, and not

on deeper levels of the hierarchy.

Lemma 3.4 For every H-PRAM program B of cost T , there exists an equivalent program B

0

of cost

^

O(T ) such

that for all partition instructions called in p-processor m-memory sub-PRAMs of B

0

holds:

total cost of the partition hyperstep � (m=p) �

p

p:

Proof Sketch: We construct B

0

by inserting idle steps with total cost m=p

p

p into all sub-PRAMs being

immediately created in a partition step of a p-processor sub-PRAM of B. Clearly, B

0

ful�ls the requirement. Cost

^

O(T ) is a consequence of Assumption 2.

The proof of Theorem 3.2 will be by stepwise reduction. In each step, we reduce the simulation of one program

to that of another program taking the same or a higher simulation time with at least the same probability. The

approach resembles that of the \idealized simulation" discussed above in that the programs constructed by the

reductions are not simulated, but are introduced for purposes of analysis only. There are two types of reduction,

described by the following two Lemmas.

Lemma 3.5 (Reduction 1) Consider two Cases:

(a) Straightline p

0

1

; p

0

2

; : : : p

0

Q

-processor sub-PRAM programs running in parallel, sometimes synchronizing with

each other. The distances l

i

between synchronizations ful�l (m=p)

p

p � l

i

� 2(m=p)

p

p and

P

l

i

= l.

(b) Straightline p

0

1

; p

0

2

; : : : p

0

Q

-processor sub-PRAM programs running in parallel with (maximal) cost l.



Let the random variable Z

a

denote the simulation time in Case (a), and Z

b

in Case (b). Then,

Prob(Z

b

� Z) � Prob(Z

a

� Z); for all Z 2 R:

Lemma 3.5 can easily be shown recalling the de�nition of H-PRAM cost and observing that the simulation time is

the maximal simulation time over all paths. As the programs of Cases (a) and (b) consist of the same operations,

the set of program paths in (b) is simply a subset of those in (a). Hence, the simulation in Case (a) cannot be

faster than in Case (b), implying Prob(Z

b

� Z) � Prob(Z

a

� Z).

The second reduction is not straightforward, and will be proven later.

Lemma 3.6 (Reduction 2) Consider two Cases:

(a) A straightline p-processor sub-PRAM program of cost l where (m=p)

p

p � l � 2(m=p)

p

p, and

(b) Straightline p

0

1

; p

0

2

; : : : p

0

Q

-processor sub-PRAM programs running in parallel with (maximal) cost l and

Q

P

i=1

p

0

i

= p.

Let the random variable Z

a

denote the simulation time in Case (a), and Z

b

in Case (b). Then

Prob(Z

b

� Z) � Prob(Z

a

� Z); for all Z 2 R: (1)

Given Lemmas 3.5 and 3.6, Theorem 3.2 can be proven as follows. We transform B into A through a sequence

of intermediate programs C

1

; D

1

; C

2

; D

2

etc. We obtain C

1

from B by applying the �rst reduction (Lemma 3.5)

to all partition hypersteps at the deepest hierarchy level, and D

1

by applying the second reduction (Lemma 3.6)

to the segments those partition hypersteps were transformed into. We obtain the other C

i

and D

i

the same way,

proceeding toward the root of the hierarchy. According to the reductions, the probability that the programs are

simulated in time

^

O(T ) can only decrease from programB to C

1

toD

1

to : : : to A. To see that the transformations

are constructive, note that in Theorem 3.2, A can be any meaningless program. To construct D

i

from C

i

, execute

steps of the desired cost in the sub-PRAM one level above in the hierarchy (and cancel the partition hyperstep).

To construct C

i+1

from D

i

(or B), observe that each value l � (m=p)

p

p can be represented as a sum of values l

i

from the range (m=p)

p

p � l

i

� 2(m=p)

p

p. Note that Lemmas 3.5 and 3.6 as given in this paper are simpli�ed

versions of those in the full paper [4]. The cost l cannot in general be the same for Cases (a) and (b). The

reason is that PRAM steps are indivisible, such that we need

p

p

0

i

jl and

p

pjl. Brie
y, the extended versions of

Lemmas 3.5 and 3.6 in [4] allow the cost in Case (a) to be slightly higher than in Case (b). Correspondingly,

the transformations slightly increase the cost of the programs. Fortunately, the increase is very small, a factor

of at most (1 + 7p=12m)(1 + p=m) per H-PRAM hierarchy level. By Assumption 3, the cost of A is larger than

that of B by at most a multiplicative factor of 1:0355

hierarchy-depth

, which can be considered constant under

Assumption 5. This completes the proof of Theorem 3.2.

The rest of this section focuses on proving Lemma 3.6 (Reduction 2). We restrict ourselves to the case

p

0

1

= p

0

2

= : : : = p

0

Q

= p

0

, which can be easily generalized.

We denote the simulation time of the i-th sub-PRAM in Case (b) by Z

i

b

. Furthermore, we denote the number of

rehashings in Case (a) by X

a

, and the number of rehashings in the sub-PRAMs of Case (b) by X

i

b

(for sub-PRAM

i).

In Case (a), we have (l=

p

p)�X

a

steps of simulation time s

p

p each, and X

a

steps of simulation time s(m=p)

p

p,

i.e.

Z

a

(X

a

) = maxfs(l +X

a

((m=p) � 1)

p

p); 2slg:

Similarly,

Z

i

b

(X

i

b

) = maxfs(l +X

i

b

((m=p) � 1)

p

p

0

); 2slg

Let Z = Z(r) = s(l + r((m=p) � 1)

p

p), for r 2 R. Note that from Property 2 of the idealized simulation, we

have Prob(Z

a

� Z(r)) = Prob(Z

b

� Z(r)) = 1, for Z(r) � 2sl. Hence, it su�ces to prove Lemma 3.6 for Z > 2sl,

which implies r � 2 (as l � (m=p)

p

p, from Lemma 3.4). We have

� Prob(Z

a

� Z(r)) = Prob(X

a

� dre), and



� Prob(Z

i

b

� Z(r)) = Prob(X

i

b

� r

p

p=p

0

)

The X

i

b

are independent random variables which are identically distributed. Let X

b

denote any representative of

these identical variables. Then,

Prob(Z

b

� Z(r)) � (p=p

0

)Prob(X

b

� r

p

p=p

0

)

Inequality (1) thus translates into

(p=p

0

)Prob(X

b

� r

p

p=p

0

) � Prob(X

a

� dre)

i.e. it su�ces to show for r � 3

(p=p

0

)Prob

�

X

b

� (r � 1)

p

p=p

0

�

� Prob(X

a

� r)

Using the above mentioned Cherno� bound, and a similar inequality on the right, this requirement transforms

into

p

p

0

0

@

el

(r � 1)

p

p=p

0

p

03

p

p

0

1

A

(r�1)

p

p=p

0

�

1

e

0

@

l

rp

3

p

p

1

A

r

(2)

The proof of inequality (2) is omitted here for brevity. It is a purely technical proof, using Assumptions 3

and 4, and the restrictions on r and l.
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